Circuítos Electrónicos; Nociones teóricas:

Dependiendo de los Fabricantes de Medidores Masa de Aire ó Caudalímetros: Bosch; Siemens; Magneti-Marelli; etc., y con tendencias actuales a disminuir el número de CABLES de los Circuítos de ENLACE para adoptar sistemas de envío de señales digitales a través de sistemas stándares conocidos por RS-232 en Comunicaciones, y en el Automóvil e Industrial por CAN (Controller Area Network = Red de Area de Controlador) que utiliza un único PAR de CABLES para conectar varios Dispositivos, las SEÑALES LÓGICAS se pueden enviar desde un Dispositivo a otro (de la UCE al ABS/ASR; Unidad Control Inyección; Lámparas Pilotos, etc.) en SERIE con los Bits uno detrás de otro, a través de UN MISMO CABLE, o en PARALELO, con UN CABLE para cada Bit a transportar. Como complemento diremos que en los ORDENADORES, el RATÓN y TECLADO conducen señales en SERIE y transmiten por ejemplo 8 bits (uno detrás de otro: 0-1-1-1-0-0-1-0), mientras que la IMPRESORA, CD-ROM y DISCO DURO realizan la transmisión en PARALELO (8 cables y cada cable transmite UN bit conjunta y simultámeamente: (0),(1),(1),(1),(0),(0),(1),(0), siendo mucho MÁS RÁPIDA la transmisión.
Los Bits se envían por los HILOS ó LÍNEA controlada por un reloj a INTERVALOS REGULARES que en el ámbito ELÉCTRICO se conoce como nivel ALTO (High) ó BAJO (Low) a través de un protocolo ó convenio sobre el inicio y fin de la transmisión, es decir; se debe indicar la forma del comienzo y finalización de las SEÑALES transmitidas.
Se llama BUS a un conjunto de Hilos homogéneos en donde el ANCHO del bus indica el nº de hilos o bits (8, 16, etc) pudiendo transportar un bus de 16 bits (16 hilos) 65.536 combinaciones distintas.
En algunos casos, el BUS puede funcionar variandolo FRECUENCIA y PERMISO (Enable), haciendo que se ACTIVE, DESCONECTE, o quede en ESPERA (alta impedancia) la CONEXIÓN y ENVÍO de señales desde la UCE al Dispositivo.
Antes de explicar brevemente los Circuítos Electrónicos, AUTOXUGA pone la siguiente NOTA:

Atención: NO ARRANCAR COCHES CONECTANDO UN CARGADOR DE BATERIAS PORQUE LOS CIRCUÍTOS ELECTRÓNICOS SOPORTAN "miliamperios" Y LOS PICOS DE TENSIÓN DE LOS CARGADORES "deteriora los Circuítos".

Circuíto Caudalímetro 1:
TEMPERATURA y VELOCIDAD DEL AIRE.- Utilizado para detectar el sobrecalentamiento de la fuente de alimentación. Si la temperatura ambiente excede del límite predeterminado para la combinación del Aire de salida, o si falla el suministro de Aire forzado para la refrigeración, el SCR conduce y se abre el disyuntor o salta el fusible.

Circuíto Caudalímetro 2:
TERMÓMETRO CON DISPOSITIVO DE SEGURIDAD CONTRA FALLOS.- El circuíto entrega un impulso de salida convencionalmente cuando la temperatura en el termistor PTC dentro del Círculo (T) alcanza el valor crítico predeterminado, y además, produce un impulso de salida y el termistor se abre o cortocircuíta. en cualquier caso, el impulso de salida produce el paro del sistema de control asociado. El circuíto es capaz de distinguir entre el termistor en cortocircuíto y uno que tenga resistencia de 30 Ohmios. El circuíto integrado funciona como comparador diferencial.

Circuíto Caudalímetro 3:
CONTROL DE PRECISIÓN DE TODO O NADA: 130-300ºC.- Aunque la precisión eléctrica con el sensor del termistor y el detector de nivel con circuíto integrado FCL101 es mejor que 0,5ºC, la precisión total que realmente se obtiene depende de la constante de tiempo térmica del objeto sometido a calentamiento, y generalmente es de alrededor de 2ºC para el márgen cubierto.

Circuíto Caudalímetro 4:
SENSOR CON TRANSISTOR.- El Transistor, con el Colector conectado a la caja para que dé rápida respuesta a los cambios térmicos, proporciona salida de Alto Nivel con linealidad del 1% desde -40 hasta +125ºC.