% %k %k ok ko ko A ko ks k ko ok ok

N /
By Authority Of
THE UNITED STATES OF AMERICA
Legally Binding Document

By the Authority Vested By Part § of the United States Code § 552(a) and
Part 1 of the Code of Regulations § g1 the attached document has been duly
INCORPORATED BY REFERENCE and shall be considered legally
binding upon all citizens and residents of the United States of America.
HEED THIS NOTICE: Criminal penalties may apply for noncompliance.

v

Document Name: SAE J2534: Recommended Practice for Pass-Thru
Vehicle Programming

CFR Section(s): 4 CFR 86.096-38(g)(17)(iv)

Standards Body: gqcicty of Automotive Engineers

WWW00009,,
‘\\\ z (P ”'
Official Incorporator:
THE EXECUTIVE DIRECTOR
OFFICE OF THE FEDERAL REGISTER

WASHINGTON, D.C. /

carl
Typewritten Text
SAE J2534: Recommended Practice for Pass-Thru
Vehicle Programming

carl
Typewritten Text
40 CFR 86.096-38(g)(17)(iv)

carl
Typewritten Text
Society of Automotive Engineers

23.600

RECOMMENDED PRACTICE FOR PASS-THRU
VEHICLE PROGRAMMING—SAE J2534 FEB2002

SAE Recommended Practice

Report of the SAE Pass-Thru Programming SAE J2534 Task Force of the SAE Vehicle B/E S 3

available.

Foreword—The use of reprogrammable memory technology in vehicle elec-
tronic control units (ECU’s) has increased in recent years, and is expected to con-
tinue in the future. Use of this technology has increased the flexibility of being
able to use a single ECU hardware part to be used in many different-vehicle con-
figurations, - with the only difference being the software and calibrations pro-
grammed into the unit. Reprogramming of those ECU’s in the service
environment also allows for ease of field modification of system operation and
calibrations, Variations in reprogramming capability and the multiple tools nec-
essary to reprogram vehicles are a burden on aftermarket repair facilities that ser-
vice different makes of vehicles.

This docyment describes a standardized system for programming that includes
a standard personal computer (PC), standard interface to a software device driver,
and an interface that connects between the PC and a programmable ECU in.a-
vehicle. The purpose of this system is to facilitate programming of ECU’s for all
vehicle manufacturers using a single set of programming hardware. Program-
ming software from multiple vehicle manufacturers will be able to execute on this
set of hardware to program their unique ECU’s.

The U.S. Environmental Protection Agency (EPA) and the California Air
Resources Board (ARB) have been working with vehicle manufacturers to pro-
vide the aftermarket with increased capability to service emission-related ECU’s
for all vehicles with a minimal investment in hardware needed to communicate
with the vehicles. Both agencies have proposed regulations that will require stan-
dardized programming tools to be used for all vehicle manufacturers. The Soci-
ety of Automotive Engineers (SAE) developed this recommended practice to
satisfy the intent of the U.S. EPA and the California ARB.

TABLE OF CONTENTS

1. Scope y

2. References : !
2.1 Applicable Pubhcatlons !
2.1.1 SAEPublications :
2.1.2 ISO Documents ‘ j
3. Definitions i |
4, Acronyms

5. Pass-Thru Concept i

6. Pass-Thru System requirements ‘
6.1 PC requirements | | '

6.2 Software Requirements and Assumptrons
6.3 Connection to PC | |

6.4 Connection to Vehlcle :
6.5 Communication Protecols' ’

6.5.1 1SO 9141 I

6.5.2 1SO 14230-4 (KWPZOOO) IS S

6.5.3 SAEJ1850 41.6 kbps PWM (pulse w1dth modulatron)
" 654 SAEJ1850 10.4 kbps VPW (variable pulse width)

655 CAN T - :

6.5.6 ISO 15765-4 (CAN)

6.5.7 SAE J2610 DalmlerChrysler SCI

6.6 Programmable' poweérsupply”
6.7 Data Buffering

7. Win32 Application Programming Interface: "~ - += '
7.1 API Functions — Overview

7.2 API Functions - Detailed Information

7.2.1 PassThruConnect

7.2.2 PassThruDisconnect

7.2.3 PassThruReadMsgs

724 PassThruWriteMsgs

7.2.5 PassThruStartPeriodicMsg

72.6 PassThruStopPeriodicMsg

727 PassThruStartMsgFilter

7.2.8 PassThruStopMsgFllter

7.2,9 PassThruSetProgramming Voltage

7.2.10 PassThruReadVersion
7.2.11 PassThruGetLastError
7.2.12 PassThruloctl

73 JOCTL Section

Diagnostics S

- pliers.
v‘programming sequence for electronic control units (ECU’s) in their vehicles, but
" allows a single set of programming hardware and vehicle interface to be used to !

dard Cc appmvedFebruaryZOOZ. Rationale statement

S ! f
731 GET_CONFIG ‘ ’
7.3.2 SET_CONFIG ,
733 READ_VBATT ; |
734 READ_PROG_VOLTAGE oo f
7.3.5 FIVE_BAUD_INIT v , ;
7.3.6 FAST INIT : :
7.3.7 CLEAR_TX_BUFFER . :
7.3.8 CLEAR_RX_BUFFER R R i
7.3.9 CLEAR_PERIODIC_MSGS : '
7.3.10 CLEAR_MSG_FILTERS L i

7.3.11 CLEAR_FUNCT_MSG_LOOKUP_ TABLE R
7.3.12 ADD_TO_FUNCT_MSG_LOOKUP_TABLE
7.3.13 DELETE_FROM_FUNCT MSG_LOOKUP.TABLE :
8. Message Structure i
8.1 C / C++ Definition - g
8.2 Elements

8.3 Message Data Formats -
8.3.1 - CAN Data Format

8.3.2 ISO 15765-4 Data Format . K
83.3 SAEJ1850PWM Data Format - Bewr o i
834 SAEJ1850VPW Data Format - S I
8.3.5 ISO 9141 Data Format i .

8.3.6 ISO 14230-4 Data Format | P

837 SCIData Format - - e : oo
84 Message Flag and Status Definitions ; :
84.1 RxStatus ; L
8.42 TxFlags oo . Coh
9., DLL Installation and Reglstratron A\ P |
9.1 Naming of Files . ; B :

9.2 ‘Win32 Registration

9.2.1 User Application Interaction with the Reglstry
9.2.2 Attaching to the DLL from an application

10. Return Value Error Codes ot
Appendrx A General ISO 15765-2 Flow Control Example !

Al ' Normal Addressing Used - | i J i
A2 : General Request Message Flow Example [
A3 General Response Message Flow Example ! i
Appendix B Message Filter Usage Example Do
B.1 . Filter Usage L
B2 Transmission of a Multr—Frame Request Message : . N
B3 . Reception of a Multi-Frame, Response Message i
B4 Filter Configuration : ! “
B.4.1 Request Message Transmission Lo G

B4.2 Response Message Reception ' [A
B.5 ISO 15765-2 Extended Addressing Notes =~ b
1. Scope—This SAE Recommenided Practice provides the' framework to allow

reprogramming software applications from all vehicle manufacturers the flexibil- |
ity to work with multiple vehicle data link interface tools from multiple tool sup- _‘
This system enables each vehicle manufacturer to control "the :

program modules for all vehicle manufacturers,

This document does not limit the hardware possibilities for the connection
between the PC used for the software application and the tool (e.g., RS-232, RS-
485, USB, Ethernet...). Tool suppliers are free to choose the hardware interface
appropriate for their tool. The goal of this document is to ensure that reprogram-
ming software from any vehicle manufacturer is compatlble with hardware sup-
plied by any tool manufacturer.

The U.S. Environmental Protection Agency (EPA) and the California Air
Resources Board (ARB) have proposed requirements for reprogramming vehicles
for all manufacturers by the aftermarket repair industry. This document is
intended to meet those proposed requirements for 2004 model year vehicles.
Additional requirements for the 2005 model year may require revision of this doc-
ument, most notably the inclusion of SAE J1939 for some heavy-duty vehicles.
This document will be reviewed for possible revision after those regulations are
finalized and requirements are better understood. Possible revisions include SAE -

J1939 specific software and an alternate vehicle connector, but the basic hardware
of an SAE J2534 interface devrce is expected to remain- unchanged o
-2. References S e
" 2.1 Applicable Publications—The following publrcatrons form a’ part of
this specrﬁcauon to the extent specified herein.- Unless. otherwrse 1nd1cated the
latest version of SAE publications shall apply.
- 2.1.1 SAE PUBLICATIONS—Auvailable from SAE, 400 Commonwealth Drrve
Warrendale, PA 15096-0001.

SAE J1850—Class B Data Communications Network Interface '

SAE J1939—Truck and Bus Control and Communications Neétwork- (multrple
~partsapply) oo oo ~ . I

SAE J1962—Diagnostic Connector o T ’

.. SAE J2610—DaimlerChrysler Information Report for Serial Data. Commum~
cation Interface (SCI)

2.1.2 ISO DOCUMENTS—Available from ANSI, 25 west 43rd Street, New

York, NY 10036-8002.

ISO 7637-1:1990—Road vehicles—Electrical dlsturbance by conduction and
coupling—Part 1: Passenger cars and light commercral vehrcles
with nominal 12 V supply voltage.

ISO 9141:1989—Road vehicles—Diagnostic systems—Requrrements for
interchange of digital information

ISO 9141-2:1994—Road vehicles—Diagnostic systems—CARB requlrements
for interchange of digital information)

ISO 11898:1993—Road vehicles—Interchange of digital 1nformauon—Con-
troller area network (CAN) for high speed communication®

ISO 14230-4:2000—Road vehicles—Diagnostic systems—Keyword protocol
2000—Part 4: Requirements for emission-related systerns

ISO/DIS 15765 2—Road vehicles—Diagnostics on controller area networks
(CAN)—Network layer services

ISO/DIS 15765-4—Road vehicles—Diagnostics on controller area networks
(CAN)—Requirements for emission-related systems

3. Definitions. .. ;

31 Regrstry—A mechamsm wrtlun W1n32 operatmg systems to handle
hardware and software conﬁguratron mformauon L L

4. Acronyms i

1

API Application Programmmg Interface o
- ASCH- -~ American Standard for Character Inforrnat1on Interchange co

CAN - Controller Area Network o

CRC Cyclic Redundancy Check

DLL Dynamic Link Library e

ECU Electronic Control Unit e

IFR In-Frame Response

IOCTL - Input/ Output Control
Kwp Keyword Protocol
OEM - Original Equipment Manufacturer
PC .. -Personal Computer
_ PWM . Pulse’'Width Modulation B
. SCI ' Serial Communications Interface

SCP . Standard Corporate Protocol
USB Universal Serial Bus
Variable Pulse Width.

5. Pass-Thru Concept—Programrmng application software supphed by the
vehicle manufacturer will run on a commonly available generic PC. This applica-
tion must have complete knowledge of the programming requirements for the
control module to be programmed and will control the programming event. This
includes the user interface, selection criteria for downloadable software and cali-
bration files, the actual software and calibration data to be downloaded, the secu-
rity mechanism to control access to the programming capability, and the actual
programming steps and sequence requrred to program each mdrvrdual control
module in the vehicle.

This document defines the followmg two. interfaces for the SAE J2534 pass-
thru device: ’)

a. Application program interface (API) between the programmjng application

running on a PC and a software device driver for the pass-thru device
. b. Hardware interface between the pass-thrn device and the vehicle .

All programming applications shall utilize the common SAE 12534 API as the
interface to the pass-thru device driver. The APY contains a set of routines that
may be used by the programming application to control the pass-thru device, and
to control the communications between the pass-thru device and the vehicle. The
pass-thru device will not interpret the message content, allowing any message
strategy and message structure to be used that is understood by both the program-
ming application and the ECU being programmed. Also, because the message

23.601

operation of the interface: For example, if a.message is sent to the ECU to goto
high speed, a specrﬁc instruction must. also be sent to the mterface to: go to hlgh
speed. X

The manufacturer of an SAE J2534 pass-thru devrce must supply both the

dévice. driver software and- the -pass-thru device hardware that comimunicates

directly with the vehicle. The interface between the PC and the pass-thrn device
can be any-technology:chosen by.the tool' manufacturer, including RS-232, RS-
485, USB, Ethemet or any other current or futurc technology, 1ncludmg wueless
technologres :

=2The OEMj programnung apphcatlon does not need to know the hardware con:
nected to the PC, which gives the tool manufacturers the flexibility fo use:any
commonly available interface to the PC:. The pass-thru device does not néed any
knowledge of the vehicle 6r control module being programmed. ‘This.will allow
all"programming- applications to work with ‘all pass-thrii devices to:énable. pro-
‘gramming of all.control modules for all vehicle manufacturers. ~-~

Figure 1 shows the relationship between the various components. requlred for
pass-thru programming and responsibilities for.each component

oo d ' .
Ctouse Tomt Doacription S0 . Inldal M I TU T R g
- sign RS
8.3 s SSSle Dimmater una Svaiity 1872 = o
82 Fose of the Shoath 338%% % b3
&3 Abpanrmns: 13872
|e Srect J S
.1 Gontimaty 14872 x ST xS
a2 vithotnnd 14672 2 2y
z < - . . . o g
7.1 Aohaulon of the Shemin o oo we [Veadera Lot s o ST LT TR
T SOLNE 15572 > >
3 Low & ot ¢] L .
8.1 T Winding 14s7E | x 3¢
= = AeTE = ==
10 =t Agia . " PP [R -
191 s.....m—..r..aur.,u 240 10 aanzz % Lt e x Lo
F10.: 2000 AASTD - N 3 Y 2
11 Roalatanco 1o Chomtanis et il
111 B ESSatniliny o e Sheath - 1as7a R T #
132 32878 >
T TS =svE = =

NOTE 3:¥ne troqucncy of noricdic tosting wit ba oy the ‘ana tha

BB
NOTE 2: Tt sissetor 6 7

m e FIGURE1—SAE125340VERVIEW et ir

= fearetre will Doos vy arved whanplie .

6 Pass-Thru System. Requzrements oo
- 1 % 6.1 PCRequirements—Generic: PC runmng a, VVm32 Operatrng System
(e.g., Windows 95/Windows 98/Windows NT/Windows Millennium Edition,
Windows 2000, Windows XP, "..).- The PC should be capable of connectlon to'the
Internet.

» 6.2 Software Requirements and Assumptlons—Reprocranmung apphca-
tions can assume that the PC will be corinected to the. Internet, although not all
applications will require-this. The OEM application is limited to a single thread
for. communication with the tool manufacturer DLL/AP]. Multiple protocels may
be connected and communicated on sequentially- (serialized) from the single
application thread. This will prevent the unnecessary complexity of detem'umng
what message responses belong to which application thread.”

6.3 Connection to PC—The interface between thé PC and the pass—thru
device shall be determined by the manufacturer of the pass-thru device.: This can
be RS-232, USB, Ethernet, IEEE1394, Bluetooth or any other connection that
allows the pass-thru device to meet all other:requirements of this document,
including timing requirements. The tool manufacturer is also required to include
the device:driver that supports this connection so that the actual interface used is
transparent to both the PC programming application and the vehicle. " ©

6.4 Connection to Vehicle—The interface' between the. pass-thru device
and the vehicle shall be an SAE J1962 connector-for serial data commiinications.
The maximum cable length between the pass-thru device and the vehicle s five
(5) meters. Vehicle manufacturers will: need to supply information about neces-
sary connections to any connector other than the SAE 1962 connector.

6.5 Communication Protocols—A fully compliant pass-thru: interface
shall support all communication protocols as specified in this section. Addition-
ally, the pass- thru device must support simultdneous communication: of an ISO
9141 OR ISO 14230-4. protocol AND ‘an SAE J1850 protocol AND a CAN or
SCI based protocol during a single programming event. Note that only one type
of SAE J1850 is required per programming eveiit, as the two types of SAE J1850
are mutually exclusive on any given vehicle. As well, CAN and SCI are; mutually
exclusive on some vehicles as:the same pins are-used. . .

The following communication protocols shall be supported

6.5.1 ISO.9141—The following specifications clarify and, if in conﬂlct with
ISO 9141, override any related specifications in ISO 9141: ’
a. The maximum sink current to be supported by the interface is 100 mA
b. The range for all tests performed relative to ISO 7637-1 is —1.0 to +40.0 V.
¢. The minimum bus idle period before the interface shall transmit an address,
shall be 300 ms.

23.602

“:d." Support following baud rate:with +0.5% tolerance::10400:~+. - ¢ .~ - =

e Support following ‘baud -rates: with +2%- tolerance: 9600 9615; 10000

- 10870, 1:1905;:12500, 13158;-13889,:14706, and 15625.
f. Support odd and even parity in addition to the default of no parity, wrth
- seven -or-eight:data:bits.. Always one start bit and one stop bit.
© 6.5.2 1SO 14230-4:(KWP2000)—The ISO 14230-4 protocol is the same as the
18091471 protocol with:the following :additions: . - :
-~ a. . The interface: will handle the tester present message and: 0x78 response:’ code

‘< automatically.(i.e., without intervention from the PC).: T

6.5.3 SAE J1850 41.6 xBPS PWM (PULSE WIDTH MODULATION)—The fo]low-

ing:additional: features:of SAE.J 1850 must be supponed by the:; pass—thru device
for41.6 kbps PWM:* - .. - =

.a... Capable of high speed:mode:of 83 3kbps e

- bi..RecommmendFord:approved SAE J1850PWM(SCP) physical layer

- 6.5.4: SAE71850'10.4 KBPS VPW (VARIABLE PULSE WIDTH)-—The - following

additional features..of: SAE J 1850 must be supported by the pass-thru devrce for
10.4. kbps VPW:. :

a. High speed mode of 41.6 kbps ’ . : o

b. 4K block transfer

6.5.5 CAN—The followmg features of ISO 11898 must be supported by the

pass-thit device: , -
" a. 250 and 500 kbps

b._11 and 29 bit identifiers

c. Support for 80% s 2% and 68.5% = 2% bit sample point.. .

d. Pass-thru message interface (i.e., raw CAN frames with no flow control in
the pass-thru device)

6.5.6 ISO 15765-4 (CAN)—The following features of- ISO 15765 4 must be

supported by the pass-thru device: "

a. 250°and 500 kbps - : : » :

b, 11 and 29 bit identifiers .

- ¢. Support for 80% = 2% bit sample pomt :

d. To maintain acceptable programming fimes, the transport layer flow control
function, as defined in ISO 15765-2, must be incorporated in the pass-thru
device (see Appendix A). If the application does not use the ISO: 15765-2

- transport layer flow control functlonallty, the- CAN protocol will eillow for

i any‘customi trahsport layer. -

6'5 7 :SAEJ2610 DAIMLERCHRYSLER SCI—Reference the SAE J2610 Infor-

mation Report for a description of the SCI protocol.

L.+ 6.6:Programmable-Poweér Supply—The interface: shall- be'capablé of sup-
plying between 5 and:20velts:to:ore of the following pins (6,9, 11, 12, 13 or 14)
on:the SAE 41962 diagnostic connector, or to an auxiliary: pin:which would need
to be connected: to: the’vehicle via a cable that is uniqué toithe vehicle: As well,
short:to:ground capabilityon pin 15 is reqmred The: fol]owmg requlrements shall
be met by:the powerrsupply o

a. Mrm.mumSV Lo

‘c.” Accuracy #0:1°V, <
“d. Maximum source current 200. mA
e. Maxrmum :sink current< 300mA (only for SHORT TO_ GROUND
.o optien)s o
R A Maxunum 1 ms Settlmg time (reqmred for SCI protocol reference SAE
J2610'Information Report) 2
+».g. Pin assignment software selectable . ~- :
6.7 Data Buffering—The:interface shall be’ capable of buffennga 4K byte
transmit'message:aswell as.a 4K byte receive message. - "
7. Win32 Application Programming Interface
7.1 APIFunctions < Overview—To conform to this. document -a 'vendor
supplied API unplementatlon (DLL) must- support thes funcnons mcluded in Fig-
ure2:.
S 12 AP Functlons Detalled Informatlon
7:2.1" PASSTHRUCONNECT—This functién-is used to establish'a logical connec-
tion with a protocol-channel. After this.function is.called; the value pointed to by
pChannellD'is used assthe logical identifier for the connection. The DLL canuse
this function to initialize data structures.and-device drivers. If the function oper-
ates successfully, a value of STATUS_NOERROR is returned and a valid channel
ID will be placed:in-<pChannellD>. All future interactions.with' the: protocol
channel will'be' done using the pChannelID. Note that all filters for the grven pro-
tocol will be cleared wrth this function.

o - Lt R e TU I 2
st - oo e T : il

Function Description ~~ N
PassThruConnect Establish a connection with a protocol channel.-© =
-| PassThruDisconnect - = -~ Terminate a-connection:with a protocolichannél. ..
. PassThruReadMsgs. -Read.message(s) from a.protocol channel..
PassThruWriteMsgs Write message(s) to a protocot channel.

PassThruStartPerIodicMsg Start sending'a message ataispecified time mterval +

< . ona grotacol channel.. . ™ . .
PassThruStopPerlodlc sq Stop a periodic message. .. AT
PassThruStartMsgFilter, Start fi Iterlng Incomlng messages ona prot

:) ‘channel: "~ '’ ==

Stops filtering incoming messages on.a.protocol” ;
channel.
Set a programming voltgggon a speclf ic pin.
Reads the'version information for the DLL- and API.
Gets the tekt description of the last error.
General /O .control functions for reading and writing
protocol confi guratlon pafameters (e.g. initialization,
: baud rates, programiing:voltages, etc.).

FIGURE 2—SAE J2534 API FUNCTIONS

- PassThruStopMsgFilter

PassThruSetProgrammingVoltage
| PassThruReadVersion

| PassThruGetLastError
PassThruloctl

7.2.1.1 €/ C++ Prototype) .

extern “C” long WINAPT PassThruConnect.

(T
unsigned long ProtocolID,
unsigned long Flags,
unsigned long *pChannellD L

)' [EARFS

7.2.1.2° Parameters) o

ProtocollD Protocol ID. ' o

Flags Connection ﬂags normally set to zerg. |
pChannellD Pointer to location for ‘the channel m that is assigned by the
DLL. Iy . ‘) e
7.2.1.3 Flag Values—See Figure 3. o e o
[Fiags Bifls) Description Wale
'31:9 Unused " i

Tool manufaclurefsgemrc

CAN.ID type. 0= 11-bit, 1:=-29-bit -
ISO15765-2 Addressing Method 0 = no extended address 1—

extended address is first byte

v . |aRerthelDbytes i
oo [Reserved for SAE < shall be
sel to0 .

FIGURE 3—FLAG VALIJES) -

6-0 o Unused

7.2.1.4 ProtocollD Values—See Figure,'4. .

Definition Description :

J1850VPW GM / DaimlerChrysler CLASSZ” i

J1850PWM Ford SCP.

1S09141 1SO9141 and I809141-2 : ‘
1S014230 1S014230-4 (Keyword: Prdtocol 2000)' ‘0x04 -

CAN Raw CAN (flow control.not; handled K "0x05
automatically by interface) ¢

1ISO15765 18015765-2 flow control; enabled (see 0x06
Appendix A for high level déscription))
SCI_A_ENGINE | SAE J2610 (DaxmlerChrysler SCIy” A ox07.. -

configuratioh’ A for engine’
SAE J2610~(DalmlerChrysIer 'SC
configuration Arfor:transmission’ -

SCI_A_TRANS |Foxa8”

SCI_B_ ENGINE. | SAE J2610(Da|mlerChryslerSCI) | 0x09
. configuration: B for engine I i
SCI_B_TRANS | SAE J2610 (DaimlerChrysler SCI) : WOxOA L)
. configuration B.for transmlssmn 5 o
Unused Reserved for SAE use 4,0)'(08"—",'
OXFFFF =]
Unused Tool manufacturer specific -0x10000= '

" | OXFFFFFFFF

B

FIGURE 4—PROTOCOL ID VALUES

7.2.1.5 Return Values—See Figure 5. .

7.2.2 PASSTHRUDISCONNECT-—This fu " on is used to terrmnate a logrcal
connection with a protocol channel. The DLL canuse this functlon to de-allocate
data structures and deactivate any device drivers. If the functlon operates success-
fully, a value of STATUS NOERROR is returned Aftertlus call the Channel ID
will no longer be valid.

Definition
STATUS_NOERROR
ERR_DEVICE_NOT_CONNECTED

ERR_INVALID_PROTOCOL_ID

Description
Function call successful: -
Device not connected to PC. -~ - -

Invalid ProtocollD value or there isa -
resource conflict (i.e. trying to connect to
multiple protocols that are mutually:
exclusive such as J1850PWM.and -
J1850VPW or CAN and SCI_A, et).

NULL pointer supphed where a vahd
pointer is requlred :

ERR_NULLPARAMETER

ERR_INVALID_FLAGS Invalid flag values.) {

ERR_FAILED

Undefined error, use” EERERTD
- | PassThruGetLastError for text descnptlon

ERR_CHANNEL_IN_USE

Channel number is currently connected.

- FIGURE 5—RETURN VALUES

7.2.2.1 €/C¥+ Prototype "~ -
o _extem “c” long W]NAPI PassThrqusconnect
e
)) .)
"7.2.2.2 Pardmeters’

"+ ChannelID *-The channel ID asmgned by the PassTthonnect functlon
+' 7.2.2.3Réturn Values—See F1gure 6.

un51gned long ChanneHD

(A

] Deﬁnition
STATUS NOERROR
+ ERR_DEVICE _NOT. CONNECTED

. ERR FAILED

Description
" Function call successful.
| Device not connected to PC.

. V'Undbeﬁned' error, Use PassThruGetLastError
for text description

ERR_INVALID_CHANNEL_ID Invalid ChannellD value.

FIGURE 6—RETURN VALUES

7.7.2.3' PASSTHRUREADMSGS—This function reads’ messages from the receive
buifer in the order they were received. If the function operates successfully, a
value of STATUS_NOERROR is returned. Note that the ISO 15765-2 FirstFrame
and TxDone indications will be returned as messages when calling this function.
Also note that all messages and indications shall be read in the order that they
occurred on the bus.
7.2.3.1 C/C++ Prototype.. o
extem “C” long WINAPI PassThruReadMsgs
(
"~ unsigned long ChanneIID
PASSTHRU_MSG *pMsg,
. unsigned long *pNumMsgs,
. un31gned long Tlmeout
)
7.2.3.2 Parameters
ChannellD The channel ID ass1gned by the PassThruConnect function.

.. pMsg ~ . Pointer to message structure(s).
.. .pNumMsgs . Pointer to location where number of messages to read is spec-
C “iffed.. On return from the. function this location will contain
. - . 'the actual number of messages read.
 Timeout = Read timeout (in milliseconds). If a.value of 0 is specified the

-. Tanction Teturns immediately.” Otherwise, the API will not
" return until the Timeout has expired, an error has occurred, or
the desired number of messages have been read. If the num-
ber of messages requested have been read, the function shall

. not return ERR_TIMEOUT, even if the timeout value is zero,

7 2 3 3 _Return Values—See Figure 7. '
724 PASSTHRUWRITEMSGS——ThlS function is used to send messages. The
messages are placed in the buffer and sent in the order they were received. If the
function operates successfully, 4 value of STATUS_NOERROR is returned. To
perform blocking writes (i.e., the function does not return until imessage is suc-
cessfully sent on the vehicle network or a timeout occurs), use the blocking flag in
the TxFlags element of the message structure (Reference 8.4.2).

23603

Definition :
STATUS NOERROR
ERR_DEVICE_NOT_CONNECTED

ERR_INVALID_CHANNEL_ID
ERR_NULLPARAMETER

Description:
Function call successful
Device not-connected to PC.

Invalid ChanneliD. value.

NULL pointer supplied where a valid
pointer is required.

‘|ERR_TIMEOUT *~|-Timeout. Device could not read the ;

B T | .specified number of messages. The s

"actual number:of messages readis =

- | placed in <NumMsgs>.. If a.timeou|
“| occurs and there-are no available-

- | messages; ERR_BUFFER_EMPTY
should be returned. ~ -

[ERR BUFFER_ENPTY -
| ERR_FAILED -

-+ | No messages available to read.

‘Undefined error, use
F’assThruGetLastError for text descnptlon

lndlcates a buffer overﬂow occurred and
.. .. | messageswere lost. The actual number -
“wi | of messages read is placed in.:: :
U T S L . [-<NumMsgs>.

_ FIGURE 7—RETURN VALUES

' ERR;BUFi:‘éR_jov‘EﬁELde‘ ‘

72'4 1C/C++ P)ozotype
_ extern “C” long WINAPI PassThruWnteMsgs o
(

un51gned long’ ChannelID LTI
PASSTHRU_MSG *pMsg, B
unsigned long *pNumMsgs,

. _unsigned long Timeout

DR ST

L 7.24. 2 Paramezers L R ‘ ..
. _ChannellD ~The channel ID as51gned by the PassThruConnect funct10n

pMsg Pointer to message structure(s). . -

;" pNumMsgs - Pointer to the location where fiumber of ,messages to wnt@ is
specified. On return will contain the actual number of mes-

o7 ~sages'that were transmitted or placed in the transmit queue
Timeout Write timeout (in milliseconds). If a value of 0 is specified the
Lo = —-function returns immediately. - Otherwise, the API will not
- . return until the Timeout has expired, an errof has occurred, or
i the desired number of messages have been written.- If the
' ’ nuniber of messages requested have been written, the function
: shall not return ERR_TIMEOUT, even 1f the tlmeout value is

 zero. - - — ‘“‘

o 7.24. 3 Return Values—See Flgure 8.

-7.2.5 PASSTHRUSTARTPERIODICMSG—This function starts sending a message
at the specified interval. Tf the function operates successfully, a ‘value 'of
STATUS_NOERROR is returned. The maximum number of penodlc messages is
ten. — -

7251 C/C++Pr0totype e =
extern “C” long WINAPI PassThruStartPenodchsg
(

unsigned long ChannellD, . o
PASSTHRU_MSG *pMsg, . . -
unsigned long *pMsgID, -
unsigned long TimeInterval . . 5. .
) 3
...7.2.5.2 Parameters. . _
ChannelID Thechannel ID a551gned by the PassThruConnect flll'lCthI'l
-pMsg - Pointer'to message structure. -~ - - =
_pMsgID " Pointer to locatlon for the message ID that is ass1gned by
theDLL. - . e
Time:interval between the start of successive transmissions
" of this message, in milliseconds. The valid range is 5-
65535 milliseconds.
"77.2.5.3 Return Values—See Figure 9.~~~ 7. 7
7.:2:6 PASSTHRUSTOPPERIODICMSG-—This function stops the process of send—
ing a periodic message. If the function operates “successfully, a value of
STATUS_NOERROR is returned. After this call the MsglID will be invalid.

" Timelnterval

23.604

7.2.6.1 C/C++ Prototype
extern “C” long WINAPI Pass’IZhruStopPenodchsg

(.
un51gned Tong ChannelID
: “unsigned long MsgID-
y - S e
Definition. .: < ¥ . Description
STATUS NOERROR o Fanction call successful.
ERR | DEVICE NOT CONNECTED | Device not connected to PC.
ERR INVALID CHANNEL ID v Invalid ChannellD value.
ERR_INVALID_MSG o Invalid message structure pointed fo by
pMsg (e.g. sendlng a 20 byte long
N "~ 2:.. | J1850PWM message; sending a: ;5
- |.J1850PWM message where the thsrd data
.) y byte is not the same as the node 1D; &tc.).
ERR_.NULLPARAMETER. NULL pointer supplied where a valid
o T T pomter is required.
ERR_FAILED: - { Undefined error, use
' PassThruGetLastError for text description
ERR_TIMEOUT X © i} Timeout.
ERR_MSG_PROTOCOL_ID Protocol type in the message does not
match protocol associated with the
ChannellD
ERR_BUFFER_FULL Protocol message buffer is full.
FIGURE 8-—RETURN VALUES,
Definition Description
STATUS_NOERROR Function call successful.
ERR.DEVICE_NOT_CONNECTED - | Device. not connected to PC.
ERR_INVALID_CHANNEL_ID lnvalld ChannellDvalue.
ERR' INVAEID"MSG' ' © I invalid messagestructure pointed to by
LT T TR I C pMsg.
'ERR;NULLP'ARAME‘T ER NULL pointer supplied where a valid

.- “bointer'is‘r‘eqmred .
ERR INVALID TIME INTERVAL lnvalld Tlmelnterval value.

ERR FAILED o] Undefmed error,.use

o PassThruGetLastError for text
o descnptlon
ERR_MSG_PROTOCOL_ID Protocol type i in the message does not
match protocol associated with the
ChannetlD")

‘ ERVR‘_EXCEEDE‘D_L[MIT } Exceeded the maximum number of
penodlc message I1Ds or the maximum
allocate space.

FIGURE 9—RETURN VALUES

7.2.6.2 Parameters

ChannellD The channel ID assigned by the PassThruConnect function.

MsgID Message ID that is assigned by the PassThruSt:artPermdchst7
function.

7.2.6.3 Return Values—See Figure 10.

Definition...Description
STATUS NOERROR - | Function call successful
ERR_DEVICE_NOT _ CONNECTED Dewce not connected to PC.
K

ERR INVALID CHANNEL ID Invalid ChannellD-value.

1 ERR_FAILED R o Undefined error, use

oo o : PassThruGetLastError for text

description -

ERR_INVALID_MSG_ID Invalid MsgID: value.

s

" FIGURE 10—RETURN VALUES

7.2.7 PASSTHRUSTARTMSGFILTER—This function starts filtering incoming
messages. If the function operates successfully, a value of STATUS_NOERROR
is returned. The maximum number of message filters is ten. See Appendices A

and B for a description of the use of these message filters for transmission and
reception of multi-frame messages.

7.2.7.1 C/C++ Prototype

extern “C”Iong WINAPI PassIhruStanMngﬂter o

.

) ‘ : !

L uns1gned long ChannelID, .
unsigned long:Filter Type,.
PASSTHRU_MSG *pMaskMsg,
‘PASSTHRU_MSG *pPatternMsg,
PASSTHRU_MSG *pFlowControlMsg,
unsigned long *pMsgID ‘

)

7:2.7.2 Parameters

ChannellD

FilterType

pMaskMsg

The channe} ID ass1gned by the PassThruConnect func—

_tion,) -

Designates:
PASS_FILTER - allows matching messages into the
receive queue.
BLOCK_FILTER - keeps. matching messages out of
the.receive-queue,, . -
FLOW_CONTROL _] FILTER deﬁnes a ﬁlter and
outgoing flow control messageto., support. the ISO
15765-2 flow control mechanism.
Designates a pointer to the mask. message: that will be
applied to each incoming message- (i.e., the mask mes-
sage that will be. ANDed to each i mcomm message) to
mask any ummportant bits.
The usage of the pMaskMsg allows for conﬁgurmg a fil-

. .ﬁlter allows for- e reception: of multlple CAN 1dent1ﬁ-

ers then those messages are-only allowed .10, be Single-

’ " Frame messages, ‘because only a single FlowControl
. CAN identifier can-be specified.

pPatternMsg

Designates a pomter to the pattern message that w111 be
compared, to. the incoming, message after the mask mes-
sage has been applied. T the Tesult matches this pattern
message and the FﬂterType is, PASS] F]LTER then the
mcommg message will adde d to the ge eive queue‘(oth-
erwise it w111 be dlscarde‘ If the result,matches this
pattern message and the F;lter’[}{pe is BLOCK” F_ILTER
then the i mcommg message w1ll be chscarded (otherw1se
it will be added to'the receive queue) Message bytes in
the received message that are beyond thé Data51ze of
the pattern message. will be treated as “don’t care”.

pFlowControlMsg Designatés a pointer to an ISO 15765-2 flow control

message. This message ,W be sent out when the
received message ANDed w the, message pomted to
by pMaskMsg matches the message pomted to by pPat-
ternMsg and the intérface is recelvmg a segmented mes-
sage. This message shall only ‘contain the message ID
(and extended address byte if the
ISO15765_EXT_ADDR flag is set). The inferface will
provide the PCT bytes when thls message is transrmtted
To modlfy the BS and STmin values that are used by the
intefface, réference the 1OCTL section. This pointer
onlyrapphes to the FLOW_CONTROL_FILTER type
and must be set to NULL when the FilterType is

" PASS_FILTER or BLOCK_FILTER.

pMsgID

Pointer to location for the messdge ID that is assigned
by the DLL.

. 7.2 7 3 Ftlter Type Values—See Flgure 11.

Definition Value .
PASS FILTER - |- 0x00600001
BLOCK FILTER : | 0x00000002
| FLOW ‘CONTROL FILTER ‘| 0x00000003

FIGURE 11—FILTER TYPE VALUES

7.2.7.4 Return Values—See Figure 12.

Definition Description
STATUS_NOERROR Function call successful.
ERR_DEVICE_NOT_CONNECTED -| Device not connected to.PC.

ERR_INVALID_CHANNEL_ID
ERR_INVALID_MSG

Invalid ChanneliD value.

Invalid message structure pomted to by
- - | pMsg: <o -

ERR_NULLPARAMETER NULL pointer supphed where a vahd

N) - ’pomter is required.
ERR FAILED .. - .- |-Undefined error, use

PassThruGetLastError fortext o
description

Exceeded the maximum number of filter
message IDs or the maximum allocate
space.

ERR_EXCEEDED_LIMIT

ERR_MSG_PROTOCOL_ID Protocol type in theé message does not
. match protocol associated with. the

ChannellD

. FIGURE 12—RETURN VALUES
7.2.8 PASSTHRUSTOPMSGFILTER—Thi# function stops the process of filtering
messages. If the function operates successfully, a value of STATUS NOERROR
is returned. After this call the MsgID will be mvahd
7.2.8.1 C/C++ Prototype
extern “C” long WINAPI PassThruStopMsgFilter.
(S .
-unsigned Jong ChannellD, -
unsigned long MsgID
y o _
7.2.8.2 Prameters ;) - o
ChannellD The channel ID assigned by the PassThruConnect function.

MsgID Message ID that is assrgned by the PassThruStartMsgFilter
: function.

E 7.2.8.3 Return Values—See Figure 13.

Definition
STATUS_NOERROR
ERR_DEVICE_NOT_CONNECTED

ERR_INVALID_CHANNEL_ID
ERR_FAILED

Description
. Function call successful.
Device not connected to PC.

Invalid ChannellD value. °

Undefined error, use
PassThruGetLastError for text
description ’

ERR_INVALID_MSG_ID " Invalid MsgID value.

FIGURE 13—RETURN VALUES .

729 PASSTHRUSETPROGRAMMINGVOLTAGE—ThJS function sets a program
ming voltage on a specific pin. If the function operates successfully, a value of -

STATUS_NOERROR 'is returned. It is up to. the application programmer to. -

insure that voltages are not applied to- any pins incorrectly. ‘This function cannot -
protect from incorrect usage (e.g., applying a voltage to pin 6 when it is berng
used for the CAN protocol). Note that for SCI protocol, the application would set’

the PinNumber, set the Voltage to VOLTAGE_OFF, and set SCI_TX_VOLTAGE .

in TxFlags of the message to pulse the programming voltage to. 20 V DC.
7.2.9.1 C/C++ Prototype : :
extern “C” long WINAPL PassThruSetProgramnungVoltage L
(%
unsigned long PinNumber, ’
unsigned long Voltage
7.2.9.2 Parameters i
PinNumber The pin on which the programming voltage will be set. Valid
options are:
0 — Auxiliary output pin (for non-SAE 11962 connectors)
6 — Pin 6 on the SAE J1962 connector..
9 — Pin 9 on the SAE J1962. connector.-
11 -Pin 11 on the SAE J1962 connector.
12 —Pin 12 on the SAE J1962 connector.
13 —Pin 13 on the SAE J1962 connector. e
14 — Pin 14 on the SAE J1962 connector.)

23.605

15 - Pin 15 on the SAE J1962 connector (short to ground
only). -

The voltage (in mllhvolts) to be set. Vahd values are:
5000mV-20000mV (limited to 200mA: with a resolution of
+100 millivolts for pins 0, 6, 9, 11, 12, 13, and 14).
VOLTAGE_OFF - To turn output off (disconsect).. -
SHORT-TO_GROUND .— Short pln to ground (pln 15
only).)

7.2.9.3 Voltage Values—See Frgure 14

Voltage

Definition Value

, Programming Voltage 0x00001388 (5000 mV) to
0x00004E20 (20000 mV)

SHORT_TO_GROUND OxFFFFFEFE

VOLTAGE_OFF OXFFFFFFFF

FIGURE 14—VOLTAGE VALUES

. 7.2.9. 4 Return Values—See Flgure 15

Deflnltlon Description
STATUS_NOERROR Function call successful.
ERR_DEVICE_NOT_CONNECTED | Device not connected to PC. -,

ERR_NOT_SUPPORTED
ERR_FAILED

Function not supported.
Undefined error, use
PassThruGetlLastError for text
description .

Invalid pin number specified.’.: ;-

FIGURE 15—RETURN VALUES s

ERR_PIN_INVALID

7.2.10 PASSTHRUREADVERSION—This . function returns the version strings
associated with the DLL. If the function operates. successfully, a value of
STATUS_NOERROR is returned. A buffer of at least eighty (80) characters must
be allocated for each pointer by the application. .

7.2.10.1 C/C++ Prototype

extern “C” Jong WINAPI PassThruReadVersion

(

 char*pFirmwareVersion,
char*pDllVersion,)
char*pApiVersion

\

7.2.10.2 Parameters : ! :
- pFirmwareVersion . - Pointer to Firmware version string in XX.YY format
o "¢ (e.g., 01.01). This string is determined by the inter-
T - face vendor that supplies the device.
Pointer to DLL version string in XX.YY format (e.g.,
01.01). This string is determined by the interface
; vendor that supplies the DLL.
- Pointer to AP version string in XX.YY format. This
i string corresponds to-the date. of the balloted docu-
' ' ment..
i October 2001 Ballot = “01 01”
December 2001 Ballot = “01.02”
’ : February 2002 Final = “02 02”
7.2.10.3 Return Values—See Figure-16:. v

pDIIVersion

* pApiVersion : °

Definition L
STATUS NOERROR '
ERR_DEVICE_NOT CONNECTED

|ERRCFAILED ~— - -

Description._.. .
Function call successful
Device not connected to PC

‘[-Undefined error, use
. PassThruGetLastError for text
.| description -

ERR_NULLPARAMETER | NULL pomter éupplled where a valid

| pointer is reqmred
' . o FIGURE 16—RETURN VALUES

72,11 PASSTHRUGETLASTERROR—Thrs functron retums the text string
descnptron for an error detected diring the last function call (except
PassThruGetLastError). This function must be called before calling any other

function. The buffer pointed to by pErrorDescnptron is allocated by the applica-
" tion and must be at least eighty (80) characters.

23.606

7.2.11.1 €/ C++ Prototype * 7.3 JOCTL Section—Figure 20 provides the details on the IOCTLs avail-
extern “C” long WINAPI PassThruGetLastError Do able through PassThruloctl functlon n o
(: : B o
: char pErrorDescnptlon i . Definition ‘ Value g
) , : GET_CONFIG -~ 1 ox01
7.2.11.2 Parameters T ‘ SET- CONFIG - - 0x02 B
pErrerDescription. Pointer to error déscnpuon string. READ VBATT ~_ ~ 0x03
7.2.11.3 Return Values—See Figure 17. FIVE BAUD_INIT __ 0x04
L | FAST_INIT : ; 0x05
- CLEAR_TX_BUFFER _ ‘ 0x07 ‘
Definition] Description] - | CLEAR_RX_BUFFER 0x08
STATUS_NOERROR ‘Function call successful - CLEAR_PERIODIC_MSGS . .~ 0x09
 ERR_NULLPARAMETER’ .- |-NULL pointer supplied-where a valid pointer CLEAR MSG FILTERS. . Ox0A
.' : | is Tequired CLEAR_FUNCT_MSG_LOOKUP_TABLE 0x0B
S j : ADD_TO_FUNCT MSG LOOKUP TABLE | 0x0C
) _ FIGURE 17—-RETURN VALUES : DELETE FROM_ 0x0D
R FUNCT_MSG_LOOKUP_TABLE
7.2.12 PassTHrUIOCTL~This function is used to read and write all the proto- - | READ_PROG_VOLTAGE S
col hardware and software configuration parameters. If the function operates suc- Reserved for SAE : OxOF
cessfully, a value of STATUS_NOERROR ‘is refurned. The structures pointed to _ - OxFFFF
by pInput and pOutput are determined by the IoctlID Please see section on Tool manufacturer specific ,8’(10000_
:OXFFFFFFFF
10CTL structures for detaﬂs

7.212,1 C/¢C +Prototype .
extern “C” long WINAPI PassThmIoctl

FIGURE 18—IOCTL ID VALUES

(:
un51gned long Channe]ID - Definition Descripti‘on -
unsigned long TootlID;- STATUS_NOERROR Funstl_on (y:sl,{}succes_sful
void *plnput, : ERR_DEVICE_NOT_CONNECTED | Deviceé:not donnected:to:PC
\)oid *ﬁOutElit o) -] ERR_INVALID_CHANNEL_ID Invalid ChannellD value.
) . ERR_INVALID_[OCTL_ID Invalid loctliD value.
7.2.12.2 Parameters .
w‘Channelll‘D ‘The channel ID assigned by the PassThruConnect function. ERR_NULLPARAMETER glélj#tlé,? Ic;nr:tezrus;%plled where a valld
“ToctlD - ToctlID (see the¢ IOCTL Section). ‘ :
plnput Péiiter to in put structure (see the 10CTL Section). ERR:NOT_SUPPORTED |- Invalid or'unsupported.| parameter/value
' pOutplat Pointer to output striicture (s¢e the IOCTL Section). ERR_FAILED Undefiried error, use
7.2.12.3 Ioctl ID Values—See Figure 18, PassThruGetlLastError for text descnptlon
7.2.12.4 Return Values—See Figure 19.) FIGURE 19—RETURN VALUES :
Value of loctilD : InputPtr - OutputPtr Purpose
represents. represents N N
GET_CONFIG Painter to NULL pointer To getthe vehicle network configuration-
s e SCONFIG_LIST .| of the pass-thru devicé.
o .| SET_CONFIG Pointer to NULL pointer To set the vehicle network configuration
T __| SCONFIG_LIST of the pass-thru device -
" READ_VBATT NULL pointer Pointer to unS|gned To direct'the pass-thru device to read '
1 long the voltage ort pin 16 of the J1962
s e : i - connector
FIVE_BAUD_INFT o Pointer to Pointer to To direct the pass-thru device to lnltlate
. i SBYTE_ARRAY" SBYTE.:ARRAY a § baud initialization:sequence;. . i]
L JEASTINIT: B Pointer to Pointer fo To direct the-pass-thru: device'to |n|tlate‘
PASSTHRU MSG PASSTHRU MSG | afast initialization sequence ,
CLEAR_TX_BUFFER NULL pointer NULL pointer ’ To direct the pass; -thru device to clear
, L. e all messages in its transmit queue
CLEAR_RX_BUFFER " NULL pointer NULL pointer To direct the pass-thru device t0 clear
' - o all messages in its réceive queue
CLEAR_PERIODIG_MSGS | NULL pointer NULL pointer To direct the pass-thru device to clear *
all periédic messages, thus stopping all
) i 3 periodic message transmission -
-GCLEAR.MSG_FILTERS NULL: pointer NULL pointer To.direct the pass-thru device to clear
. N SRR ' :) all message filters, thus stopping all
L i - - filtering
oo .:'LCLEAR_F’UNCT_ NULL pointer NULL pointer To direct the pass-thru device to clear
© ' |"MSG _EOOKUP_TABLE the Functional Message Look-up Table
o . _ |_ADD_TO_FUNCT_ Pointer to | NULL pointer To direct the pass-thru device to add a
! e : MSG LOOKUP TABLE SBYTE_ARRAY functional address to the Functional
) Message Look-up Table -
DELETE FROM FUNCT_ | Pointer to NULL pointer To direct the pass-thru device to delete
MSG_LOOKUP_TABLE SBYTE_ARRAY a functional address from the” :
. e . Functional Message Look-up Table
R‘EAD_PROG'_»,VOLTAGE NULL pointer Pointer to unsigned | To direct the pass-thru device to read
’ long the feedback of the programmable
voltage set by
PassThruSetProgrammingVaoltage

FIGURE 20—IOCTL DETAILS

7.3.1 GET_CONFIG—The IoctlID value of GET_CONFIG is used to obtain
the vehicle network configuration of the pass-thru device. The calling application .

is responsrble for allocatmg and 1n1t1ahzmg the assocrated parameters descnbed - Value i
Parameter | Description : :
loctliD Is set to the define GET CONFIG o e T e
“InputPtr Points to the structure SCONFlG LIST, Wthl’I is def ned as follows T e
typedef struct ; Cel i
{ . o . : \
unsigned long NumOfParams; /* number of SCONFIG elements */
SCONFIG *ConfigPtr; - 1* array of SCONFIG ¥/
N }SCONFIG_LIST":_ e e o L ~
| where: '
NumOfParms is an INPUT, whrch contams the number of SCON FIG elements in the array
- pointed to by ConfigPtr. : - ST e
Conf igPtris a pornter to an array of SCONFIG structures - B
i The structure SCONFIG is def ned as foliows
typedef struct L
(.
. unsrgned Iong Parameter ¥ name of parameter: */ - -
| . . unsigned long Value; /" value of the parameter */
| } SCONFIG . : :
| where: SRR . B I N B
| Parameter is an lNPUT that represents the pararneter to be obtarned (See Flgure 23 for a |1st
~ofvalid parameters).
Value is an QUTPUT that represents the value of that parameter (See Figure 23 for a list of
~ .| valid values).
OutputPtr - | Is a NULL pointer, as this' parameter is notused. . - -

7.3.2 SET_CONFIG—The IoctlID value of SET_CONFIG is used to set the
vehicle network configuration of the pass-thru device. The calling application is
responsible for allocating and initializing the associated parameters described in

-- FIGURE 21—GET_CONFIG DETAIL

Parameter

Description

loctliD

Is set to the define SET CONFIG.

InputPtr

Points to the structure SCONFIG_LIST, which is defined as follows:
typedef struct

unsigned long NumOfParams; /* number of SCONFIG elements */
SCONFIG *ConfigPtr; [* array of SCONFIG */
} SCONFIG_LIST

where:

NumOfParms is an INPUT, which contains the number of SCONFIG elements in the array
pointed to by ConfigPtr.
ConfigPtr is a pointer to an array of SCONFIG structures.

The structure SCONFIG is defined as follows:

typedef struct
{
unsigned long Parameter; /* name of parameter */
unsigned long Value; I* value of the parameter */
} SCONFIG
where:

Parameter is an INPUT that represents the parameter to be set (See Figure 23 for a list of
valid parameters).

Value is an INPUT that represents the value of that parameter (See Figure 23 for a list of
valid values).

OutputPtr

Is a NULL pointer, as this parameter is not used.

FIGURE 22—SET_CONFIG DETAILS

23.607

in Figure 21. When the function is successfully completed, the corresponding
|"'parameter value(s) indicated in Figures 23A 23B, and 23C will be placed in each

Figure 22. When the function is successfully completed the corresponding param-
eter(s) and value(s) indicated in Figures 23A, 23B, and 23C will be in effect.

23.608

Valid values tor
Parameter

ID Value

" Valid-values for

“Value

Description

DATA_RATE

0x01

| 5-500000

Represents the desired baud rate.

There is no defalilt value.

Unused

0x02

‘| ReservedforSAE. . . o -

LOOPBACK

0x03

O(OFF)
1 (ON)

70 = Don't echo transmltted messages |n the

receive queue.

- 1 = Echo transmitted messages in the receive

queue: N
The default value is OFF.

NODE_ADDRESS

0x04

0x00-0OxFF

For a protocol ID of J1850PWM, this sets the
node address in the physical layer of the vehicle
network.

NETWORK_LINE

0x05

0 (BUS NORMAL) .

1 (BUS_PLUS)
2 (BUS_MINUS)

For a protocol ID of. J1850PWM this sets the
network line(s) that are active during
communication (for. cases where the physical
layer allows:this). - :

The default value is BUS_NORMAL.

P1_MIN

0x06

Ox0-OXFFFF

For protocol ID 6f1S09141, this sets the
minimumyinter-byte t|me (in milli-seconds) for
ECU responses.

The default value is 0 milli-seconds.

P1_MAX

0x07 -.

0x0-OXFFFF

For:protocol ID.of 1S09141, this sets the
maximum; inter-byte time (in milli-seconds) for
ECU responses (in:milli-seconds).

The default valueis 20 milli-seconds.

P2 MIN &

0x08 .

. For'protocol-ID-of 1S@9141, this sets:the

-‘minimum time (in milli-seconds) between tester
request and ECU responses or two ECU

‘| responses. wos

' The default value is 25 mllll-seconds

FIGURE 23A—IOCTL GET_CONFIG / SET CONFIG PARAMETER DETAILS

Valid values for
Parameter

~IDValue

Valid‘value’s for i Y

Value -

P2 MAX

0x09~ .~

[OxG-OFFFE

'

For protocol 1D.of [SO9141, this’ sets the I

“maximum time (in mllll-seconds) between tester
request and ECU responses or two ECU
responses.

The default value is 50 milli-seconds.

P3-MIN -

Ox0A - ©

: 0x0:-0xFFFF

For protocol ID of (S09141, this sets the

-}-minimum time. (in.milli-seconds) between end.of _
I ECU response and start of new tester request.

The default value is 55 milli-seconds.

© 7 Deseription™ T T

P3_MAX

0x0B

OX0-OxXFFFF

B

For protocol ID of [S09141, this sets the
maximum time (in milli-seconds) between end of
ECU response and start of new tester request.

- The default value'is 5000 milli-seconds. ™ -

P4_MIN i

’ OxOC)

OX0-OXFFEF

For protocol ID of [S091441, this sets the
minimum inter-byte fime (in milli-seconds) for a
tester request. :

The default value is § milli-seconds.

W1

~0x0D

“OxO-OXFFFF -

“For protocol ID of 1S09141; this setsthe - -~ -].~ -

maximum inter-byte time (in mulh-seconds) fora F

testef request.
The default value is 20 milli-seconds.

“OX0E

OXO-OXFFEE

For protocol ID of [S09141, this sets the
maximum time.(in milli-seconds) from.the end of
the address byte to the start of the :
synchronization pattern.

The default value is 300 milli-seconds.

wa.

0xOF

Ox0-OxFFFF

For protocol ID of [S091441, this sets the
maximum time (in mllll-seconds) from the end of
| the synchronization pattern to the start of. key
byte 1.

The default value is 20 milli-seconds.

w3

0x10 .' .

1 0x0-OxFFFF

For protocol ID of 1IS09141, this sets the
maximum time (in milli-seconds) between key
byte 1 and key byte 2.

The default value is 20 milli-seconds. - - — |

W4

dxﬂ

| OX0-OXFFFE

For protocol 1D -of 1IS09141, this sets the .- - -
maximum time (in mllh-seconds) between key
byte 2.and its inversion from the.tester.

The default value is 50 milli-seconds.

Wb

0x12

| Ox0-OxFFFF

For protocol 1D of 1IS09141, this sets the

minimum time (in milli-seconds) before the tester)

“start'to transmit the address byte.
The default value is 300 milli-seconds.:

[TibLE

_0x13

“OXO-OXEFEF

1

For protocol ID. of 1IS09141, this sets the amount

of bus idle time that is needed before a fast
-initialization sequence will begin: -~ - - -
The default is the value of W5. .- :

TINIL

0x14

T 0x0-0xFFFF

For protocol ID of ISO9141, this sets the duration
(in mllll-seconds) for the low pulse in fast

- initialization. - - -
_The default value is 25 mllll-seconds

TWUP

0x15

0x0-OxFFFF

For protocol ID of [SO9141, this sets the duration

| (in milli-seconds) of the wake-up pulse in fast

Jinitialization. The default value is 50 milli- -
seconds.

PARITY

0x16

0 (NO_PARITY)
1 (ODD_PARITY)
2 (EVEN PARITY)

For a protocol ID of ISOQ141 only
. The default value is NO PARlTY

BIT_SAMPLE_POINT

0x17

0-100

For a protocol 1D of CAN, th|s sets the deswed bit
sample point as a percentage of the bit fime.. The
default is 80%.

SYNC_JUMP_WIDTH

0x18

0-100 -

For a protocol 1D of CAN, this’ sets the desired
synchronization jump width as a percentage of
the blt time. The default is 15%.

FIGURE 23B—IOCTL GET_CONFIG / SET. CONFIG PARAMETER DETAILS (CONTINUED)

23.609

Valid values tfor E
Parameter

1D Value

Vaiid vaiues for
~ Value -

S Deséfiption’ o e

Unused

T Réser\;ed for SAE

T1_MAX

T 0x19
o Qx“l‘Af"

~OX0-OXFFFF

For protocol ID of SCI_A_ENGINE,
SCI_A_TRANS, SCI_B_ENGINE or
SCI_B_TRANS, this sets the maximum inter-

| frame response delay. The default value is 20

milli-seconds.

T2_MAX

Ox0-OXFFFF

For protocol ID of SCI_A_ENGINE,
SCI_A_TRANS, SCI_B_| ENGINE or

' ivSCl B_TRANS, this ‘'sets the maximum inter-

frame request delay. The default value is 100
milli-seconds.

T4_MAX

Ox0-OxFFFF

For protocol ID of SCI_A_ENGINE,
SCI_A_TRANS, SCI_B, ENGINE or
SCI_B_TRANS, this sets the maximum inter-
message response delay. The default value is

| 20 milli-seconds.

T5_MAX

Ox0-OxFFFF

For protocol'ID of SCI_A | ENGINE
SCI_A_TRANS, SCI_B_ENGINE or
SCI_B_TRANS, this sets the maximum inter-

| message request-delay: The defaultvalue.is.
100 milli-seconds.

ISO15765 BS

. 0x0-OxFF

For protocol ID of ISO15765, this sets the block
size for segmented transfers. The default value
is 0. Default value or value set by the

" application may be overridden by interface to
match the capabilities of the interface.

1ISO15765_STMIN

0x0-0xFF

For protocol ID of 1ISO15765, this sets the
separation time for segmented transfers. The
default.value is 0. Default value or value set
by the application may be overridden by"
interface to match the capabilities of the
interface.

Unused -

" Ox20- OXFEFE

--- Reserved for. SAE

Tool manufac':‘t\l.lvrer
specnf‘ c

OXFEEFFFFF.

. 0x10000.~ .

Manufacturer

“Manufacturer Specific

B FIGURE23C—IOC’I‘L GET

=)

7.3.3 READ_VBATT—The ToctlID value of READ_VBATZ is used.fo obtain
the voltage measuréd on pin 16-of the SAEJ1962:connector from: the pass-thru
device. The calling' application”is responsi 2

' Spemf c

NEI 7 SET_CONFIG PARAMETER DETAILS (CONTINUED)

associated parameters described in Figure 24. When the function is successfully
completed, battery voltage will be placed in the variable pointed to by OutputPtr.
The 'units<will be in milli-volts and will be rounded to the nearest tenth of a volt.

Parameter -

LDescnpﬂon

loctliD = -

Is set o the define READ-VBATT.

InputPtr .. |

Is a. NULL polnter as this parameter is not used

OutputPtr

734 READ_PROG_VOLTAGE—The loctID ‘value: of READ PROG VOLTAGE
is used to obtain the programming voltage of‘the pass-thru dévice. The calling
application is respon51ble for allocating and 1mt1a11z1ng the ass0c1ated parameters, -

Is a pointer to an. unsugned long.
: FIGURE 24—READ_VBATT DETAILS

descnbed in Figure 25. When the function is successfully completed, program-
ming voltage will be placed in the variable pointed to by OutputPtr. The units will
_be in milli-volts and will be rounded to the nearest tenth of a volt.

| Parameter Descrnptlon
“loctlID- -Is>set to-the:define READ -PROG VOLTAGE

1~ InputPtr Is-a-NULL pointer, as this parameter is not used.
OutputPtr _ ,Is a pointer to.an unSIQned long.

7.3.5 FIVE_BAUD_INIT—The IoctliD value of FIVE_BAUD_IN'IT isused to
initiate a 5-baud initialization sequernce
application is responsible for allocating and initializing the associated parameters

FIGURE 25—READ_PROG_VOLTAGE DETAILS

described in Figure 26. When the function is successfully completed, the key
words will be placed in structure pointed to by OutputPtr. It should be noted that
this only applies to Protocol ID of ISO 9141.

from the pass-thru device. The calling

23.611

Parameter | Description

loctiiD Is set to the define FIVE_BAUD INIT. -

I InputPtr
Typedef struct - -
{

unsigned .Iong NumOfotes; :

unsigned char *BytePtr;
).SBYTE:_ARRAY)
where:

array BytePtr.

Points to the structure SBYTE ARRAY whlch is deﬁned as follows S

I" number of.by'tes |n fhe’ array:*/ -
I* array of bytes */

NumOfBytes is an INPUT thatmust be setto “1" and lndlcates the number of bytes inthe

BytePitr{0] is an INPUT that contains the target address: AR ’
The remaining elements in BytePtrare notused. - - -~ . - o T e

| OutputPtr

where:. -

Points to the structure SBYTE-_ARRAY deﬁned above .

NumOfotes is an INPUT whlch mdlcates the maxsmum size of the array BytePtr and an
OUTPUT which indicates the number of bytes in the amay BytePIr. May be less than "2"
BytePtr{0] is an OUTPUT that contains key word 1. from the EGU.
BytePtr[1] is an QUTPUT that contains key word 2 from the ECU.
The remaining elements in BytesPir are not used.

FIGURE 26—FIVE _BAUD_INIT DETAILS

7.3.6 FAST_INIT—The IoctlID value of FAST_INIT is used to initiate a fast
initialization sequence from the pass-thru device. The calling application_is
responsible for allocating and initializing the associated parameters described in

Figure 27. When the function is successfully completed, the response message
will be placed in structure pointed to by’ OutputPtr It should be noted that this
"only apphes to Protocol ID of ISO 9141.. ;

Parameter Description

loctllD Is set to the define FAST _INIT. .

InputPtr Points to the structure PASSTHRU_MSG. (see the message def nltlon sectlon of thls i
document) which the pass-thru device will send.) :

OutputPtr Points to the structure PASSTHRU_MSG (see the message definition sect(on of thls !
document) which the pass-thru device will receive.

FIGURE 27—FAST |

7.3.7 CLEAR_TX_BUFFER—The IoctlID value of CLEAR_TX_BUFFER is
used to direct the pass-thru device to clear its transmit queue. The calling applica-
tion is responsible for allocating and initializing the associated parameters

" 'queue will have been cleared

INIT DETAILLS T
H

described in Figure 28. When the fun]ctxon is successfully completed, the transmit

Parameter | Description .
loctiiD is set to the define CLEAR TX BUFFER.

. InputPtr Is a NULL pointer, as this parameter is not used.

) OutputPtr Is a NULL pointer, as this parameter is not used.

FIGURE 28—CLEAR_TX_BUFFER DETAILS

7.3.8 CLEAR_RX_BUFFER-—The loctlID value of CLEAR_RX_BUFFER is
used to direct the pass-thra device to clear its receive queue. The calling applica- -
tion is responsible for allocating and initializing the associated parameters

descnbed in Flgure 29 ‘When the functloh 15 successfully completed, the receive
queue will have been cleared.

Parameter | Description

loctlID Is set to the define CLEAR RX BUFFER
InputPtr Is a NULL pointer, as this parameter is not used.
OutputPtr Is a NULL pointer, as this parameter is not used.

FIGURE 29—CLEAR_RX_BUFFER DETAILS

7.3.9 CLEAR_PERIODIC_MSGS—The ToctllD value ' of
CLEAR_PERIODIC_MSGS is used to direct the pass-thru device to clear its
periodic messages. The calling application is responsible for allocating and ini-

: uahzmg the assoc1ated parameters descnbed in Figure 30. When the function is

successfully completed, the list will have been cleared and all periodic messages
will have stopped transmitting,

Parameter Description T I (o
loctliD Is set to the define CLEAR_PERIODIC_MSGS. L L e [
InputPtr Is a NULL pointer, as this parameter is not used.) R

OutputPtr Is a NULL pointer, as this parameter is not used.

FIGURE 30—CLEAR_PERIODIC_MSGS DETAILS

73.10 CLEAR MSG_FILTERS—The IoctlID value of CLEAR_MSG_FILTERS
is used to direct the pass-thru device to clear its message filters. The calling appli-
cation is responsible for allocating and initializing the associated parameters

described in Figure 31. When the function is successfully completed, the list will
have been cleared and all message filtering will have stopped.

23.612

Parameter Description

loctlID | Is.set to.the define.CLEAR MSG FlLTERS

InputPtr Is a NULL pointer; as this parameter is not used.

OutputPtr Is a NULL pointer, as this parameter is not used. o

‘FIGURE:31—-CLEAR_MSG_FILTERS DETAILS

ble for allocating aﬂdfirﬁtial.izihg the associated parameters described in Figure
32. When the function is successfully completed, the table will have been
cleared,.Jt should be noted that this only applies Protocol ID of SAE J1850PWM.

7.3.11 CLEAR_FUNCT_MSG_LOOKUP_TABLE—The IoctlID value of
CLEAR_FUNCT_MSG_LOOKUP_TABLE is used to direct the pass-thru device
to clear its functional message look-up table. The.calling application.is.responsi-._

Parameter | Description R -

loctliD | Is-set to-the-define-CLEAR: FUN T MSG LOOKUP TABLE.
InputPtr Is a NULL pointer, as this parameter is notused. ™~
‘QuiputPlr Is a NULL pointer, as this parameter is not used.

' .o FIGURE 32——CLEAR FUNCT MSG LOOKUP TABLE DETAILS

7.3.12 ADD_TO_FUNCT_MSG_ LOOKUP TABLE—The IoctlID value of
ADD_TO_FUNCT MSG_LOOKUP_TABLE is used t add functional .
address(es) to the functional message look-up table in the physwal layer of ‘the™
vehicle network on the pass-thru device. The calling application is responsible for”

a]locaung and initializing- the associated parameters described in Figure 33.
. When' thie function is successfully completed, the look-up table will have been
- altered. It should be noted that this only applies Protocol ID of J1850PWM.

; Description .
| Is:set to the define ADD TO FUNCT MSG_ LOOKUF’ TABLE.
Points to the structure SBYTE_ARRAY, which is defined as follows:
| Typedef struct . -

{

Parameter -
loctllD
InputPtr

] - rurnsirgriled. lr)ng, NumOfBytes;.
I~ unsighed char *BytePtr;
} SBYTE_ARRAY

/* number of bytes in the array */
/¥ array of bytes */~

" where: '
NumOfBytes is an lNPUT that indicates the number of bytes in the array BytePtr.
1 BytePtr[0}is an INPUT that eontains the first functional address to be added.

| BytePtsn].is an INPUT that contains the nth.functional address to be added.
Is a NULL pointer, as this parameter is not.used.

FIGURE 33—ADD_TO_FUNCT_MSG_LOOKUP_TABLE DETAILS ‘

OutputPir

7.3.13 DELETE_FROM;FUNCT_MSG_LOOKUP_TABLE—'Ihe~ - JToctlID-
value of DELETE_FROM. FUNCT_MSG_ LOOKUP_TABLE is used to delete----'
functional address(es) from the functional-message look-up table-in the-physical- -

-responsible forvallocating and ini_tiaﬁzii‘fg the -associatéd parameters described in

Figure 34. When the function is: successfully- completed, the look-up table will

have been altered. It should be noted that thxs- only— apphes Protocol ID of

layer of the vehicle network on the pass-thru device-The calling application'is - - J 1850PWM: - -

| Parameter
loctllD
InputPir

Description ,

Is set to the define DELETE FROM FUNCT_MSG LOOKUP TABLE IR
Points to the structure SBYTE_ARRAY, which is defined as.follows: .
Typedef struct

{

-] unsigned long NumOfBytes; /* number.of bytes in the array !
- . . unsigned char *BytePir;. . r array of bytes >
.| }SBYTE_ARRAY. _ . — - Lo
where:
NumOfBytes is an INPUT that indicates the number of bytes in the array BytePtr.
- BytePtr[0] is.an INRUT that contains the first functional address to be deleted.. .

-|- BytePtr[n] is an INPUT that contains the nth functional address fo be deleted.
OutputPtr - Is.a NULL pointer, as-this parameter is-not used.

- FIGURE 34—DELETE FROM_FUNCT_MSG_] LOOKUP TABLE DETAILS

8. Message Structure—The following message structure. will be used for all
messages. Thetotal meSsage size (in bytes) is the DataSize. The ExtraDatalndex
points to the IFR or checksum/CRC byte(s) when applicable. For consistency, all
interfaces. should.detect only the errors listed for. each protocol in the followmg
sections when returning ERR_INVALID: MSG. - :

. 8.1 C/C++ Definition -

typedef struct {
unsigned long ProtocollD;. .. e
unsigned long RxStatus; _ S
unsigned long TxFlags; - - : h T
unsigned long Timestamp; ~ - T
-unsigned long DataSize; - - -2 .o i
unsigned long ExtraDatalndex;,
unsigned char Data[4128]

} PASSTHRU_MSG;

8.2 Elements i S

ProtocollD Protocol type S e

RxStatus Receive message status — See RxStatus in “Message Flags

and Status Definition” section

TxFlags _ Transmit message flags — See TxFlags i “Message Flags
o .and Status Definition” section

Timestamp- Received message timestamp (rmcroseconds)

DataSize Data size in bytes

ExtraDatalndex Start position of extra data in received message (e.g., IFR,
CRC, checksum, ...). The extra data bytes follow the body
bytes in the Data array. The index is zero-based.

Data Array of data bytes.

8.3 Message Data Formats—The following sections describe. the bytesin.. ..

the Data section of the PASSTHRU_MSG structure. In cases where extra data is

included, the ExtraDatalndex will give the byte index from the beginning of the -

PASSTHRU_MSG structure Data section to the first byte of extra data.

NOTE—Extra bytes are.not supported for PASSTHRU_MSG structures

used for transmitting messages..

8.3.1 CAN DATA FORMAT—The CAN protocol is used-for raw CAN message | - - v ocwe o

interfacing to the vehicle. This protocol can be used to handle. any custom CAN

messaging protocol, including custom flow control mechanisms. The order of the

bytes is shown in Figure 35.

Data
0 CAN ID (bits 24-29)
1 CAN ID (bits 16-23)
2 CAN ID (bits 8-15)
] 3 :
4

CAN ID (bits 0-7)
First data byte of message

DataSize - 1 | Last data byte of message
_ FIGURE 35—CAN DATA FORMAT

NOTE—Extra bytes are not supported for PASSTHRU__MSG structures used

for transmitted messages.
8.3.1.1 CAN Data Format Error Detection—The following data format
errors should be detected when using the ERR_INVALID_MSG for CAN data:
a. DataSize less than four (4) bytes or greater than twelve (12) bytes (4 ID
bytes + 8 data bytes).

8.3.2 ISO 15765-4 DATA FORMAT—The ISO 15765-4 protocol implements
the network layer (i.e., adding the PCI byte to the transmitted messages, perform-
ing flow control, and removing the PCI byte from received messages) in the
device so the application just sends and receives the actual message data. The
order of the bytes is shown in Figure 36.

- J1850VPW- is shown in Flgure 38

23.613

Data
0 L CANID (bits24-29) . .

1 ... | .CAN.ID (bits16-23). . . =
2 . | CANID (bits 8-15)
3

4

.| CAN ID (bits 0-7). . .
_.. 72wz | First data.byte of message (or
ISO15765-2 extended address byte
when [SO15765_ ADDR “TYPE is
set) :

‘DataSize -1 | Last data byte of message I
FIGURE 36—ISO15765-4 DATA FORMAT - é

NOTE—Extra bytes are not supported for PASSTHRU MSG structures used
? * for transmitted messages. " ° i
8.3.2.1 ISO 15765-4 Data Format Error Detection—The following data
format errors should be detected when usmg the ERR INVALID MSG for ISO
15765-4 data:
a. Datanze less than four (C) bytes am only) or greater than 4101 bytes (4
D bytes + 1 possible extended address byte + 4096 data bytes).
8.3.3 SAE J1850PWM DATA FORMAT—The order of bytes for J 1850PWM is
shown in Figure 37. .

Data S

Offset .
10 First byte of message
N i “Last byte of'message :
‘ ExtraDatalndex IFR byte_or CRC
DetaSize -1 CRC

) FIGURE 37———SAE J 1850PWM: DATA= FORMAT

NOTE—Extra bytes are not supported for PASSTHRU. MSG structures used
for transmitted messages.

8.3.3.1 SAE J1850PWM Data Format Error Detectzor—The following data

format errors should be detected when usmg the ERR_INVALID_MSG for
J1850PWM data:

a. DataSize less than three 3) bytes (3 header bytes) or greater than 10

bytes (3 header bytes + 7 data bytes).
b. Source address that is different than the node ID.,
8.3.4 SAE J1850VPW DATA FORMAT—The order SAE

of bytes for

Offset Data

0 - - First byte of message -
N Eest byte of message
ExtraDatalndex | IFR byte or CRC
DataSize-1 | CRC

FIGURE 38—SAE J1850VPW DATA FORMAT

NOTE—Extra bytes are not supported for PASSTHRU_MSG structures used
for transmitted messages.
8.3.4.1 SAE J1850VPW Data Format Error Detection—The following data
format errors should be detected when using the ERR_INVALID_MSG for SAE
J1850VPW data:
a. DataSize of zero or greater than 4128 bytes.

23:614

8.3.5 ISO 9141 DATA FORMAT—The order of bytes for ISO 9141 is shown in
Figure 39

fanE

Data_—_ -

Offset

- 0 Y ,,Fifst'byte;ofine'Ssege“
h 7. .. | Lestbyte of message
ExtraDataIndex /- Checksum ; '
DataSize=T::n - -

FIGURE 39~—ISO 9141 DATA FORMAT)

8.3.5.1 IS0 9141 Data Format Error Detectmn—The following data format
errors should be detected when using'the ERR_INVALID_MSG for ISO 9141
data: Fi h ; =

, a. DataSize of zero.or greater than 261 bytes,
8. 3 6 ISO 14230-4 DATA FORMAT—The order of bytes for ISO 142304 is
shown i in Flgure 40. .

‘ Offset

Data
0 .. | First byte of message
] n,. o - I'..est'byte of message
ExtraDatalndex / | Checksum
DataSize - 1

FIGURE 40—ISO 14230-4 DATA FORMAT

N

8.3.6.1 1SO 14230-4 Data Format Error Detection—The -following- data
format errors:-should be detected when usmg the ERR INVALID_MSG for 1SO
14230-4 data:
a. DataSize of less than four: (4- byte header) or: greaten than 261 bytes (4
byte header + 256 data byies - I byté chécksuin): Bt
8.3.7 SCI DaTA FORMAT—The order of bytes for:SCLis: shown in Flgure 41.

Offset Data e
0 First byte of message
N Last byte of message —

FIGURE 41—SCIDATA FORIVIAT

8.3.7.1 SCI Data Format Error Detection—The . followmg data format
errors should be detected, when using the ERR INVALID MSG for SCI data
4. DataSize of zero or greater than.2 " bytes. -
8.4 Message Flag and Status De
8.4.1 RXSTATUS—Definitions for RxStatus blts are shown in Figuré 42
8.4.2 TXFLAGS—Definitions for TxFlags bits are shown in Figure 43.

oAb, L

[L oy

| Definition RxStatus Bit(s) Descrlptmn _,'Value v
2 4 31-24" Unused: . tiTool manufacturer
3 -'.._." = »‘»‘specn"‘c ¥ . : ‘
239 Uhused | Resefved for AE—‘{ =
S D . I B L shall - c

['CAN 29BIT ID" - I CANIDType . |0=1 I

7-3 Unused . ; Reserved for, SAE— RN
B ' i shall be setto 0 .
4 RX_BREAK . 12

Break indication

0=no lndlcatlon 1 = |
received

ISO15765_FIRST FRAME | 1

1ISO15765-2 'First
Frame Ind_ieat_ion

st Frame
Note:nodatais

-|:message. . "z o
TX_MSG_TYPE 0 Receive Indication/ | 0 = received, 1 =
- o Transmit | transmitted:
Confirmation -

FIGURE 42—RXSTATUS BIT DEFINITIONS

Definition TxFlags Bit(s) | Description ; |- Value - ;
31-24 Unused i Tool manufacture }
- --—|-specific- --— -
SCI_TX_VOLTAGE 23 SCI programming 1.0 =no voltage after
voltage .| message transmit, 1 =
1 apply 20V after
) ~--|-message transmit
2217 (- | Unused . - Reserved for SAE -
; - . shall be setto 0
BLOCKING 16 ¢ | Blocking flag 0 =non-blocking, 1 =
| [blocking
e | 1529 Unused : Reserved for SAE -
L) ' shall be setto 0
CAN_29BIT_ID 18 CAN ID type 0 = 11-bit, 1 = 29-bit

18O15765_ADDR_TYPE - |7

ISO15765-2 Addressing
Method

0 = no extended
address, 1 = extended

address s first byte
after the ID bytes
- | Note: if different, this
will override Flags in
the PassThruConnect
for this message

ISO15765_FRAME_PAD 6

1S015765-2 Frame

0 = no padding, 1 =

Padding pad all flow controlled
‘messages to a full
. CAN frame using
; zeroes
50 Unused | Reserved for SAE -

shall be set to 0

FIGURE 43—TXFLAGS BIT DEFINITIONS

9. DLL Installation and Registration

9.1 Naming of Files—In general, each vendor will provide a different "

name implementation of the API DLL and a number of these implementations
could simultaneously reside on the same PC. No vendor shall name its implemen-
tation “J2534.DLL”. All implementations shall have the string “32” suffixed- to

end of the name of the API DLL to indicate 32-bit. For example, if the company
name is “Vendor X” the name could be VENDRX32.DLL. For simplicity, an API -

DLL shall be named in accordance with the file allocation table (FAT) file system
naming convention (which allows up to -eight characters for the file name and

three characters for the extension with no spaces anywhere). Note that, given this = -
criteria, the major name of an API DLL can be no greater than six characters. The -~
OEM application can determine the name of the appropriate vendor’s DLL usmg‘ T

the Win32 Registry mechanism described in this section.

9.2 Win32 Registration—This section describes the use of the. Windows '
Registry for storing information about the various vendors supplying the device
drivers conforming to this recommended practice, the various devices supported

by each vendor, information about each device, etc. The Win32 registration is
shown in Figure 44,
The registry will contain both:

a. General information used by the user apphcatlons for selectlon of hard— '

ware, user information, etc.

--b.- Vendor/Device specific information that the vendor uses in the imple-
mentation of the API. Considering that the object of this recommended
practice is the need for interchangeability of hardware from various ven-
dors, the user application using the this API will be required to use the
registry to present to the users all the hardware devices that have been
installed and display. their capabilities. The user should be allowed to

“select any hardware having the required capabilities, in terms of proto-
" colssupported etc., for a particular reprogramming session.
The Devices key will contain a list of keys, onie for each device supported by

~'the vendor

_Ex: * ACME Serial Dev1ce

ACME Ethernet Device

ACME Parallel Device etc.
““Bach ‘Vendor Device Key will have the entries shown in Figure 45 associ-
ated with them:

Example for Key: ACME Ethernet Device

L9, 2.1 USER APPLICATION INTERACTION WITH THE REGISTRY—The user appli-

catlon should use the registry to present to the user the list of devices available for
use - from the application. Once the device has been selected by the user the Regis-
try should be.used to retrieve all the information regarding the device so that the

appropriate DLL can be loaded for use etc. Figure.46 is a flow chart that shows a
“typical usage. '

23.616

HKEY_LOCAL_MACHINE. |

Software (Kéy)
_ ’ | 7 0 Keys
PassThruSupport L Vendorl
| (Key): . . Vendor2
Vendor3
L Vendor(n) Id (DWORD) K
) o s L Name (String) €ys
Devices (Key) Devicel .
Device2
N Device3
.[.):vice(n)
IR v
| Deviceld (DWORD)
| Name (String)
ProtocolsSupported (String)
ConfigApplication (String)
Functianibrary (String)
. .\".e.;n-dorSpeciﬁcValues
s . : FIGURE 44—WIN32 REGISTRATION :
SR ‘Deviceld -+ | 'DWORD ‘Aunlque ID for the dewce supphed bythe vendor
., |Name “[Sting . |.The name of the device. Ex: - ACME CAN- Devnce over - |
| Ethernet” N AR [-

ProtocolsSupported | String |.The.various protacols supperted by the deVIce |sted here;r T T -
separated.by commas. The representatlons of protocols, here e
| will be same as the ProtocolId symbolic constants used-in
) PassThruConneét- unctnon for the purpose, of conssten'
listing of a protocol here is only for the purpose of |n I
and will not guarantee that the actual hardware Wi ,support R
the, protocol asitis possmle that the hardware ‘confi guratlon S
| may have changed.
| EX;“CAN, ISO1 5765, J1850VPW, J1 850PWM ISOQ141
i ISO14230"
A protocol ‘appearing multiple times will indicate that more
. . than one ¢hannel supportlng the protocol eXlS‘lS on the
. ‘ -) hardware.

C ConfigApplication String The complete path of the configuration application for this”
device: For every device listed in the section the vendor is
required to provide a configuration application where the user
can set the different parameters required for successfully
using the device, like COM port, Ethernet address etc.

Ex: “cAACME\ACMESERCFG.exe”

The user applications using the API will automatically launch
this application when the user needs to configure the selected
device.

FunctionLibrary String The complete path of the DLL supplied by the vendor to
communicate with this device. The user applications using this
device should automatically load the DLL specified here and
map into the J2534 AP functions.

Ex: “C\ACME\ACMESES32.dII”

<Vendor Specific - The vendor will store all the vendor specific information here.
Values>

FIGURE 45—WIN32 REGISTRY VALUES

_“ - . Starf OEM Api)ii}:aﬁbn'

23.617

..... e Device Selected? - . - e

o Scan for all avallahle devnces from the |- :
- Remstrv R '

Retrleve Function lerary Path from

M '

Registry

---Have user select.a device_ P

‘ Loadthe DLL . .

Dynamically map the J2534 AP

_ funetions to the functions from the
o loaded DLL - ’

Unload library before exiting application
or before sclecting an other device

FIGURE 46—APPLICATION]N'I'ERACTION WH‘H REGISTRY

9.2.2 ATTACHING TO THE DLL FROM AN APPLICA'I‘ION——Thls document requires
OEM programming applications to explicitly load the appropriate DLL and
resolve references to the DLL supplied functions. This is accomplished by using
the native Win32 API functions, LoadLibrary, GetProcAddress and FreeLibrary
(see the Win32 API SDK reference for the details of these functions). |

When using GetProcAddress, the application must ‘supply the name of the func-

tion whose address is being requested. The function names should be used with
GetProcAddress in order to explicitly resolve DLL functlon addresses when usmg
GetProcAddress.

To support this method, it is required that all tool vendors complle their- DLL T

with the following export library definition file. This will help prevent name.
mangling and allow software developers to use the process-defined in this-section

as well as calling by ordinal for compllers/languages that - may not support that

functionality.

All vendor DLLs and OEM applications should be built w1th byte ahgnment/ -

(i.e., packing) set to one (1) byte.

|

9 2.2.1 Export Lzbrary Deﬁmtzon lee ;
;VENDOR32.DEF: Declares the: module’ parameters.

LIBRARY “VENDOR32 DLL™ = - .
EXPORTS . - e
PassThruConneét - ‘_'@1'PRIVATE
- PassThruDisconnéct: "@2'PRIVATE
--- - PassThruReadMsgs - - -- - @3 PRIVATE
. PassThraWriteMsgs - - @4'PRIVATE
i PassThruStartPeriodicMsg @5 PRIVATE
.7~ PassThruStopPeriodicMsg @6 PRIVATE
: PassThruStartMngﬂter . " @7 PRIVATE
PassThruStopMsgFilter -~ @8 PRIVATE
PassThruSetProgramnungVoltage@9 PRIVATE
PassThruReadVersion @10 PRIVATE
-~ PassThruGetLastError - - - @11 PRIVATE
" PassThruloctl @12 PRIVATE

- 10. Return Value Error Codes—Figure 47 lists the numerical equivalents and
text descnpuon for the error or return codes identified in this document.

23.618

Definition Value(s) ' Description: - - '
STATUS NOERROR 0x00 Function call successful
ERR_NOT _SUPPORTED 0x01 | Function not supported
ERR_INVALID_GCHANNEL _ID. - ~-.-}0x02 - ~-|-Invalid thannelan\"/alue .
ERR_INVALID_PROTOGOL_ID | 0x03 ~[Tnvalid ProtocollD value
ERR_NULLPARAMETER 0x04 NULL pointer supplied where a vahd
:) : pomter is required -
ERR_INVALID_IOCTL_VALUE 0x05 lnvalld value for loctl parameter
ERR_INVALID_FLAGS 0x06 Invahd ﬂag values
ERR_FAILED 0x07 Undefined erior.’ Get description with
PassThruGetLastError.
ERR_DEVICE_NOT_CONNECTED 0x08 Device not connected to PC
ERR_TIMEOUT 0x09 Timeout. No message available to
réad or could not read the specified
number of messages The actual
number of messages read is placed in
<NumMsgs>-
ERR_INVALID_MSG 0x0A Invalid-message struc;ture pointed-to
by pMsg (Reference Section8
Message Structure)
ERR_INVALID TIME lNTERVAL 0x0B ‘[Invalid Timelnterval value
ERR | EXCEEDED LlMIT ' 0x0C Exceeded maximum number of
message [Ds or allocated space |
ERR lNVALID MSG ID RS ‘| 0x0D Jnvalid MsglD value ..
ERR_| INVALID ERROR ID ‘ Ox0E _Invalid ErrorID value
:ERR_INVALID_IOCTL. D" - OxO0F Tnvalid loctiD value
_ ERR_BUFFER_EMPTY 0x10 "Protocol message buffer empty
:ERR_BUFFER_FULL . ox11 Protocol message buffer full
"ERR BUFFER_ OVERFLOW . 0x12 Protocol message buifer overflow
S ERR_PIN_| INVALID -] ox13 | Invalid pin numiber '
ERR_CHANNEL_I N_USE - 0x14) \Channel already in use .
ERR-MSG.PROTOCOL_ID 0x15 "~ |Protocol type'does not match the
protocol associated with Channel 1D
‘| Unused 0x16- Reserved for SAE use
OxFFFFFFFF

A.1 Normal Addressing Used—This section includes examples of multi-frame
request and response messages using flow control as defined in ISO 15765-2.

FIGURE 47—ERROR VALUES

APPENDIX A

GENERAL ISO 15765-2 FLOW CONTROL EXAMPLE

assignments shown in Figure Al apply.

These examples assume that normal addressing is used for the request and the

CAN Id

CAN Id type

Usage

241 hex

Physical request CAN ID

For the transmission of a request message from the pass-thru interface
to the ECU this CAN ID Is used by the interface for:

e FirstFrame
e ConsecutiveFrame(s)

For the reception of a response message from the ECU this CAN ID is
used by the pass-thru interface for:

« FlowControl frame

641 hex

Response CAN ID

For the transmission of a response message from the ECU to the pass-
thru interface this CAN ID Is used by the ECU for:

* FirstFrame
e ConsecutiveFrame(s)

For the reception of a request message from the pass-thru interface this
CAN ID is used by the ECU for:

e FlowControl frame

FIGURE A1—CAN IDENTIFIER ASSIGNMENT EXAMPLE

response messages (no extended address present), and that the CAN identifier

A.2 General Request Message Flow Example—The general request message
CAN frame flow example in Figure A2 shows the usage of the-PassThru functions
in the pass-thru interface to transmit a multi-frame request message to the ECU
and how the CAN frames are transmitted onto the CAN bus by the interface and
the ECU.

a. The application requests the transmission of a request message via the

PassThruWriteMsgs API function. The pass—thru interface transmits the-

FirstFrame to the ECU using the physical request CAN Identifier.
b. The ECU confirms the reception of the FirstFrame and transmits its Flow-

Control frame (using the response CAN Identifier) with: FlowStatus'set to

CTS (ClearToSend), BS equal to 3 and STmin set to the minimum time the
pass-thru interface shall wait between the lransmlssmn of the Consecutive-
Frames.

c. After the reception of the FlowControl frame from the ECU the pass-thru:
interface starts to transmit the first block of ConsecutiveFrames of the
request message, using the physical request CAN Identifier. After the trans-
mission of 3 ConsecutiveFrames the interface stops transmitting, because it
awaits that the ECU sends a FlowControl frame.

[T

23.619

d. The ECU confirms the reception of the 3 ConsecutiveFrames and transmits
- its FlowControl frame (using the response CAN Identifier) with FlowStatus

set to WAIT. This indicates to the pass-thru interface that the ECU is in
progress of processing the ConsecutiveFrames and that a further FlowCon-
trol will be transmitted (which either indicates that the ECU needs further
time to process the received data or that the interface can continue to send
ConsecutiveFrames).

. The ECU transmits. its FlowControl‘frame with FlowStatus set to CTS

(ClearToSend) BS equal‘to 3 and STmin sét to the minimum time the pass-

thru interface shall wait between the transmission of the further Consecu-
tiveFrames.

. After the reception of the FlowControl frame from the ECU the pass-thru

interface starts to transmit the remaining 2 ConsecutiveFrames of the

~ request message, using the physical request CAN Identifier. After the trans-
" ‘mission of the 2 ConsecutiveFrames the request message is completely

transmitted to the ECU and the ECU can process the request. The comple-
tion of the transmission is confirmed to the application via the
TX_MSG_TYPE bit in RxStatus retrieved through the PassThruReadMsgs
API function.

- Tester - ECU

PassThruWriteMsgs—3 (a) 0x241 T
: \FirsiFrame 1 ..

3 - e 2l i

B4 0x641 (b) —>FirstFrame indication
FlowControl

= FS=CTS
0x241 o K
o ConsacutiveFrame
0x241 i \.
., J:-i-. . ConsecutlveFrame
N cox2t e e _ . . .
ConsecutiveFrame s - - ‘
C] oxest (q)
FlowControl
FS=WAIT
" : 0x641 (e)
FlowControl
Lo COFs=CTS ... | | : Lk S A I ST
0x241 P~ E T I R N e
(f) o ConsecutiveFrame . | B : - . R : P R
0x241
P Th R aM . ConsecutiveFrame L EEE T,
assThruRea sgs , - Ly e -
- RxStatus—Transmltconﬁrmahon -) Recelve Indicatian

. FIGUREAZ"—GENERAL CAN FRAME FLOW EXAMPLE -REQUEST MESSAGE’

A.3 General Response Message Flow Example—The response message CAN
frame flow example in Figire A3 shows the usage of the PassThru functions in
the pass-thru interface during the reception of a multi-frame response message
from the ECU and how the CAN frames are transmitted onto the CAN bus by the
interface and the ECU.

a.. The ECU application requests the transmission of a response message. The
ECU ttansmits the FirstFrame to the pass-thru interface using the response
CAN Identifier.

b. The pass-thru interface confirms the reception of the FirstFrame and trans-
mits its FlowControl frame (using the physical request CAN Identifier) with
FlowStatus set to CTS (ClearToSend), BS equal to 5 and STmin set to the
minimum time the ECU shall wait between the transmission of the Consec-
utiveFrames. The reception of the FirstFrame is indicated to the application
via the ISO15765_FIRST_FRAME bit in RxStatus retrieved through the
PassThruReadMsgs API function.

~ ¢. After the reception of the FlowControl frame from the pass-thru interface
" the ECU starts to transmit the first block of s:pnsecuﬁveFrames" of the

response message, usmg the response CAN Identlﬁer Affer the transnns-

" sion of 5 ConsecutiveFrames the ECU stops transmlttmg, because it awalts

that the interface sends a FlowControl frame.

. The pass-thru interface confirms the reception of the 5 ConsecunveFrames

and transmits its FlowControl frame (using the physwal request CAN Iden-

"~ tifier) with FlowStatus set to CTS, BS equal to 5 and STmin set to the mini-

mum time the ECU shall wait between the transrmssmn of the further
ConsecuuveFra.mes

e.” After the reception” ‘of the FlowCornitrol" frame from the pass- “thru 1nterface
“the ECU starts t0 transmit the remaining 3 ConsecunveFrames of the

response message, using the response CAN Identifier. After the transmis-

" “sion of the 3 ConsecutiveFrames the response message is completely trans-
mitted to the interface. The completion of the reception is indicated to the

application via the TX_MSG_TYPE bit in RxStatus retrieved through the

. PassThruReadMsgs API functlon (plus the received data)

23.620

Tester

ECU
o 0x641 (a) <€—Transmit response
’ FirstFrame h
PassThruReadMsgs: - .
RxStatus=FirstFrame indication ; /
(b) ox241 [~—~—FlowControl
: l=s=crs\b
0x641
ConsecutiveFrame -
0x641
N ConsecutiveFrame
& ox6a1 [~ (€)
ConsecutiveFrame
& 0x641
ConsecutiveFrame
&) 0x641
ConsecutiveFrame
(d) 0x?41 [~~—~~FlowControl
: FS=CTS\
‘e, 0x641
ConsecutlveFrame
- 0x641 (e)
- ConsecutiveFrame
i 0x641
4 g - ConsecutiveFrame
PassThruReadMsgs g/ o R .
ransmit confirmation
RxStatus=Receive indication €] > T !

\4

. v
FIGURE A3—GENERAL CAN FRAME FLOW EXAMPLE - RESPONSE MESSAGE

APPENDIX B

"

MESSAGE FILTER USAGE EXANIPLE

B.1 Filter Usage—The message flow example in Appendix A generally shows

how the transmission and reception of a multi-frame message is done according to

ISO 15765-2, using normal addressing. This section will describe how the filters

have to be configured in the pass-thru interface in order to be able to transmit and
receive the shown multi-frame messages (request/response).

B.2 Transmission of a Multi-Frame Request Message—The
application requests the transmission of a request message via the PassThru-
WriteMsgs API function. If the transmitted message- is more than will fit into a
single CAN frame then the pass-thru interface transmits the FirstFrame of the
multi-frame message. The FirstFrame uses the CAN ID (241 hex plus optional
extended address) as specxﬁed in the message passed via the PassThruWnteMsgs
API function. THé' FlowControl sent. by the ECU is received, masked and
matched (CAN Identifier 641 ‘hex plus ophonal extended address) with the flow
control ﬁlter, ' Was setup with the Pass’I'hruStarLIVIngﬂter API function. I
there i isa match,'the message is then transmltted accordmg to I‘.he BS and STmin
values in the FlowControl message: .,

B3 Receptzon of @ Multi-Frame Response Message—The ECU starts to
transmit its response message by sending the Fn'stFrame The FlrstFrame sent by
the ECUi is received, masked .and matched (CAN Identifier 641 hex ‘plus optional
extended address) with the flow “control filter that was setup with the
Pass’IhruStartMngllter API function. If there is a match, a FirstFrame indication
is given by a zero length message with the ISO15765_ FIRST_FRAME bit set in
the RxStatus. Next, FlowControl frame is sent to.the ECU using ‘cither the, default
BS and STmin parameters, or the modified values sef using the PassThruloctl API
function. If the interface is not capable of supporting those values, the interface
may override them.

B.4 Filter Configuration—This section defines how the filter in the API shall
be specified in order to be able to receive and transmit the multi-frame messages
as given in the previous sections. It is assumed that the pass-thru interface is con-
nected properly to the application (PassThruConnect already performed) and the
ChannellD required to be passed to the PassThruStartMsgFilter API function is
valid. The parameters passed to the PassThruStartMsgFilter function in order to

PTGBTaﬁ iming -

be ‘4ble'to transmit and receive the example multi-frame messages are specified as
follows:”

ChannellD: Contains the value retrieved previously via the
o PassThruConnect function for the ISO15765 protocol.
Filter Type: FLOW_CONTROL_FILTER
pMaskMsg: Receive message. mask;, points to a PASSTHRU_MSG,
where the structure members are set as follows (note
that all bits are relevant to be filtered on for the given
example):
ProtocollD: - 18015765 .
RxStatus: 't
TxFlags:
‘ " CAN_29BIT_ID'= 0 (11 bit
CANID used) o
1015765, , ADDR TYPE
=0 (noxmal addressmg used)
1SO15765_ FRAME PAD,
=0'(don't care for receptlon)
resulting TxFlags value:
00000000 hex
TimeStamp: 00000000 hex (don't c‘are)
DataSize: . _4(CANID only) ‘
ExtraDatalndex: 0 _
Data: 000007 FRhex A
pPatternMsg: Receive message, points to a PASSTHRU_MSG, where
the structure members are set as follows:
ProtocollD: ISO15765
RxStatus: 00 hex (don't care)
TxFlags: SCI_TX_VOLTAGE =0

BLOCKING =0

23:621

CAN:29BIT ID'=0 (11 bit ranTinien T ISO15765:FRAME_PAD

“CANIDused) * - TelwpEe Ll TR e =) (n6 padding in case of
ISO15765_ADDR_TYPE SRS S I N " Flow Control transmission.
=0 (normal addressing used) poT T e 0l CInicase of - FirstFrame and

Sl { © . ISO15765. FRAME_PAD
: =0 (don't care forreception)
- resulting” TxFlags value:
00000000 hex

<t ConsecutiveFrame’ transmis-
" “’sion thé padding flag given
in the message t6 bé. trans-

<o 7Tt - mitted s used: = provided in
TimeStamp: - 00000000 hex (don't care) N RPN . PassThruWriteMsgs) - :
DataSize: ‘4(CANID only) =: T i egesulting . TxFlags - -value!
ExtraDatalndex: = 0 : g R : o 00000000 hex 3
* . Data: . - 00:00- 0641 hex -5 *TimeStamp:’ -~ 00000000 hex (don't care)
' pFlowConlIolMsg Transrmt message, points to a PASSTHRU_MSG, DataSize: N 4(CAN 1D. only)
Lo where the structure: members are set as follows: LUt L Sy ExtraDataIndex 0 :
ProtocollD: ~ISO15765 - RS A R " Data:' - - 00 00 0241 hex
RxStatus: I .00 hex (don't-care) Do pMsgID: DR Pomter fo storage Iocatlon for ﬁlter reference 1dent1ﬁer
TxFlags: SCI_TX .VOLTAGE =0 (later used to delete filter): s
DT T “BLOCKING =Q-* Wlth the filter configured as shown in this section, the mterface is able to trans-
CAN_:29BIT_ID =0 (11 bit mit and receive the multi-frime messages as given in the examples. The following
CAN ID used) figures provide details regarding the handling in the pass- thru mterface taking
ISO15765_ADDR_TYPE into accounit that this filter is set-up in the pass-thru interface.
=0 (normal add're'ssing used) * B. 4.1 Request Message Transinission—See Figure B1. .. -
) Filter match,_ Tester o) ECU : c L ‘
PassThruWnteMsgs——b found for (a) 0x241. . ’ RO
- TxMsg \szstmmag . I
0x641 {b) —P» FirstFrame indication
Filter match : FlowControl
found for | ¢——— ~ FS=CTS
. RxMsg 0x241 P
ConsecutiveFrame
1) - 0x241 o .
{e)4 -~ ConsecutiveFrame |- = 7, - -
x4t i
i ConsecutiveFrame
- 6x641 (d)
Filter match | FlowControl. .
found for | ———— - FS=WAIT }
RxMsg-) .- -7 . :
e 0x641 (e)
Filter match e FlowControl
found for | €—— - FS=CTS
RxMsg 0x241 .
"~ ConsecutiveFrame -
0x241 N
- o] F)
PassThruReadMsgs onsecufiveFiame .
RxStatus=Transmit confirmation ¥ i »Recelve Indication
. . v

FIGURE B1—MESSAGE FLOW EXAMPLE WITH REFERENCES TO FILTER PARAMETERS -
REQUEST MESSAGE . |

3 ConsecutiveFrames the pass-thru interface Stops transmitting, because
. - it awaits that the ECU sends a FlowControl frame.

The apphcatlon configures the flow control filter usmg the Pass’I‘hruStart—-
MsgFilter API function.

tion. The interface transmits the FirstFrame to the ECU using the CAN
Identifier as given in the message to be transmitted.

. The ECU confirms the reception of the FirstFrame and transmits its

FlowControl frame (using the response CAN Identifier) with FlowStatus
set to CTS (ClearToSend), BS equal to 3 and STmin set to the minimum
time the pass-thru interface shall wait between the transmission of the
ConsecutiveFrames.

. The pass-thru interface searches all configured flow control filters to see

if a match with FlowControl message can be found. In case a match is
found then the pass-thru interface starts transmitting ConsecutiveFrames
according to the FlowControl parameters received, using the CAN Iden-
tifier as given in the message to be transmitted. After the transmission of

a. The application requests the transmission of a segmented (1 €., more than L. d The ECU confirms the reception of the 3 ConsecutiveFrames and trans-
one CAN frame of data) message via the PassThruWnteMsgs API func-

mits its FlowControl frame (using the response CAN Identifier) with
FlowStatus set to WAIT. The pass-thru interface searches all configured
filters for a match. In case a match is found then the pass-thru interface
behaves as specified in the FlowControl frame (wait for further Flow-
Control).

. The ECU transmits its FlowControl frame with FlowStatus set to CTS

(ClearToSend), BS equal to 3 and STmin set to the minimum time the
pass-thru interface shall wait between the transmission of the further
ConsecutiveFrames.

. The pass-thru interface searches all configured filters for a match. In

case a match is found then the pass-thru interface behaves as specified in
the FlowControl frame. The pass-thru interface starts to transmit the
remaining 2 ConsecutiveFrames of the request message, using the CAN
Identifier as given in the original message to be transmitted. After the

23.622,

transmission of the 2 ConsecutiveFrames the request message is com-
pletely transmitted.to the ECU and the ECU can process the request. The
: -completion. of the transmission is confirmed to the application via the
5. IX_MSG_TYPE . bit in RxStatus retrieved through the PassThru-
ReadMsgs:APL function.
_B.4:2 Response Message Reception—See Figure B2.
~The apphcauon configures the flow control filter using the PassThruStart-

MsgFilter API function. The application configures the BS (5) and STmin (0)
parameters for the interface-using the PassThruloctl API function, but the inter-
face:may override these:values to match the capabilities of the interface.

a. The ECU:application requests the transmission of a response message.
The ECU: transmits the FirstFrame to- the pass-thru interface using the
response CAN. Identifier.

b. The pass-thru interface receives the,\FlrstFrame and searches all config-
ured filters for a match. In case a match is found then the pass-thru inter-
face. confirms -the reception .of the FirstFrame and transmits its
FlowControl frame (using the CAN: Identifier and the padding informa-
tion, as speeified in the-flow control filter message). The FlowStatus will
be CTS: (ClearToSend);: BS (IOCTLparameter):will be equal to 5 and
STmin (JOCTL parameter) will be set-to: the minimum time the ECU
shall wait between the transmission of the ConsecutiveFrames. Further-
more the reception of the.FirstFrame is indicated to the.application via
the 1SO15765_FIRST_FRAME bit in RxStatus retrieved through the
PassThruReadMsgs API function (using a message of zero length).

c. After the reception of the FlowControl frame from the pass-thru inter-
face the ECU starts to transmit the first block of ConsecutiveFrames of

‘mission of 5 ConsecutiveFrames the ECU stops transmitting, because it
awaits; that the. pass-thru interface sends a FlowControl frame. For any

- received ConsecutiveFrame the pass-thru interface will search through
..-the list of configured filters to find a match. In case a match is found then

the data of the ConsecutiveFrame will be stored internally for the later
message receive indication.

. The pass-thru‘interface confirms the reception of the block of 5 Consec-

utiveFrames and transmits its FlowControl frame using the message con-
figured in the filter, The FlowStatus will be set to CTS, BS will be equal
to 5:iand: STmin will be set to the:minimum time the ECU shall wait
between the transmission of:the further ConsecutiveFrames.

. After the reception of the FlowControl: frame from the pass-thru inter-

face;the ECU starts to transmit the.remaining 3. ConsecutiveFrames of
the response message, using the response CAN Identifier. For any
received ConsecutiveFrame the :pass-thru interface will search through
the list of configured filters to find a match. In case a match is found then
the data: of the ConsecutiveFrame will-be stored internally for the later
receive: indication. After the transmission of the 3 ConsecutiveFrames
the response message is completely transmitted to the pass-thru inter-
face. The completion of the reception is indicated to the application via

* the TX_MSG_TYPE bit in RxStatus retrieved through the PassThru-

ReadMsgs API function (plus the collected message data).

B.5 ISO 15765-2 Extended Addressing Notes—For extended addressing the
same handling as described for normal addressing applies, except that the filter in
the pass-thru interface is set-up to use the extended address in addition to the
CAN ID when filtering on receive messages and verifying that a transmission is

the request message, using the response CAN Identifier. After the trans- possible.
Tester ECU
E P, 0x641 (a) ¢——Transmit response
PassThruReadMsgs ¢ | Filter atch found for: | Firetframe .
s eadMsgs r match found for: |- -
RxStatus=FirstFrame indication RxMsg; use TxMsg and /
BS/STmin from 10CTL | (B} 0x281 e 010 0introl
for FlowContrsl “~ | ™ : Fs=cTs-\b
0x641
2 . ConsecutiveFrame
«—4 0x641
" COnsecuuveFrame
| Fiter matcn | ¢ K oeet [(€)
: found for H ConsecutiveFrame
T Ramsg | 0x641
T ConsecutiveFrame-: =
— 0x641
1 consecuuveFrame
Use TxMsg and
BS/STmin from 10cTL | (@ P24 S 10w Control
for FlowControi =< o Fs=CTS\’)
- e - H] Ox641
ConsecutiveFrame
0x641
Filter match ConsecutiveFrame B (e
found for - 0x641
RxMsg ConsecutiveFrame
PassThruReadMsgs "
RxStatus=Recelve indication v v »Tr confin

FIGURE BZ—MESSAGE FLOW EXAMPLE WITH REFERENCES TO FILTER PARAMETERS -
RESPONSE MESSAGE

